Suppr超能文献

通过肿瘤和直肠 MRI 影像组学特征预测直肠癌新辅助治疗后的病理反应和淋巴结转移。

Prediction of pathological response and lymph node metastasis after neoadjuvant therapy in rectal cancer through tumor and mesorectal MRI radiomic features.

机构信息

Department of Radiology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.

Department of Radiation Oncology, Cancer Center, Peking University Third Hospital, Beijing, China.

出版信息

Sci Rep. 2024 Sep 20;14(1):21927. doi: 10.1038/s41598-024-72916-9.

Abstract

Establishing predictive models for the pathological response and lymph node metastasis in locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT) based on MRI radiomic features derived from the tumor and mesorectal compartment (MC). This study included 209 patients with LARC who underwent rectal MRI both before and after nCRT. The patients were divided into a training set (n = 146) and a test set (n = 63). Regions of interest (ROIs) for the tumor and MC were delineated on both pre- and post-nCRT MRI images. Radiomic features were extracted, and delta radiomic features were computed. The predictive endpoints were pathological complete response (pCR), pathological good response (pGR), and lymph node metastasis (LNM). Feature selection for various models involved sequentially removing features with a correlation coefficient > 0.9, and features with P-values ≥ 0.05 in univariate analysis, followed by LASSO regression on the remaining features. Logistic regression models were developed, and their performance was evaluated using the area under the receiver operating characteristic curve (AUC). Among the 209 LARC patients, the number of patients achieving pCR, pGR, and LNM were 44, 118, and 40, respectively. The optimal model for predicting each endpoint is the combined model that incorporates pre- and delta-radiomics features for both the tumor and MC. These models exhibited superior performance with AUC values of 0.874 (for pCR), 0.801 (for pGR), and 0.826 (for LNM), outperforming the MRI tumor regression grade (mrTRG) which yielded AUC values of 0.800, 0.715, and 0.603, respectively. The results demonstrate the potential utility of the tumor and MC radiomics features, in predicting treatment efficacy among LARC patients undergoing nCRT.

摘要

基于 MRI 影像组学特征,建立预测新辅助放化疗(nCRT)治疗局部晚期直肠癌(LARC)病理反应和淋巴结转移的预测模型,这些特征源自肿瘤和中直肠间隙(MC)。本研究纳入 209 例接受 nCRT 治疗的 LARC 患者,所有患者均行直肠 MRI 检查,包括治疗前后的 MRI。将患者分为训练集(n=146)和测试集(n=63)。在治疗前后的 MRI 图像上分别勾画肿瘤和 MC 的感兴趣区(ROI)。提取影像组学特征,并计算 delta 影像组学特征。预测终点为病理完全缓解(pCR)、病理良好缓解(pGR)和淋巴结转移(LNM)。各种模型的特征选择包括:依次剔除相关系数>0.9 的特征,以及单因素分析中 P 值≥0.05 的特征,然后对剩余特征进行 LASSO 回归。建立逻辑回归模型,并用受试者工作特征曲线(ROC)下面积(AUC)评估模型性能。在 209 例 LARC 患者中,达到 pCR、pGR 和 LNM 的患者分别为 44、118 和 40 例。预测每个终点的最优模型是包含肿瘤和 MC 的术前和 delta 影像组学特征的联合模型。这些模型的 AUC 值分别为 0.874(用于预测 pCR)、0.801(用于预测 pGR)和 0.826(用于预测 LNM),优于 MRI 肿瘤消退分级(mrTRG),其 AUC 值分别为 0.800、0.715 和 0.603。结果表明,肿瘤和 MC 影像组学特征在预测接受 nCRT 治疗的 LARC 患者的治疗效果方面具有潜在的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/373b/11415499/9c934c2b3407/41598_2024_72916_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验