Department of Mathematics and Statistics, University of Massachusetts, 710 N. Pleasant St, Amherst, MA, 01003, USA.
Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2, Canada.
Bull Math Biol. 2024 Sep 22;86(11):129. doi: 10.1007/s11538-024-01355-4.
Formation of organs and specialized tissues in embryonic development requires migration of cells to specific targets. In some instances, such cells migrate as a robust cluster. We here explore a recent local approximation of non-local continuum models by Falcó et al. (SIAM J Appl Math 84:17-42, 2023). We apply their theoretical results by specifying biologically-based cell-cell interactions, showing how such cell communication results in an effective attraction-repulsion Morse potential. We then explore the clustering instability, the existence and size of the cluster, and its stability. For attractant-repellent chemotaxis, we derive an explicit condition on cell and chemical properties that guarantee the existence of robust clusters. We also extend their work by investigating the accuracy of the local approximation relative to the full non-local model.
胚胎发育中器官和特化组织的形成需要细胞迁移到特定的靶标。在某些情况下,这些细胞作为一个强大的簇迁移。我们在这里探讨 Falcó 等人最近对非局部连续体模型的局部近似(SIAM J Appl Math 84:17-42, 2023)。我们通过指定基于生物学的细胞-细胞相互作用来应用他们的理论结果,展示了这种细胞通讯如何导致有效的吸引-排斥 Morse 势。然后,我们探讨了聚类不稳定性、聚类的存在和大小及其稳定性。对于趋化吸引-排斥,我们推导出一个关于细胞和化学性质的显式条件,该条件保证了强大聚类的存在。我们还通过研究局部近似相对于全非局部模型的准确性来扩展他们的工作。