Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
J Biol Chem. 2024 Oct;300(10):107803. doi: 10.1016/j.jbc.2024.107803. Epub 2024 Sep 21.
Desmethylphosphinothricin (L-Glu-γ-P) is the H-phosphinic analog of glutamate with carbon-phosphorus-hydrogen (C-P-H) bonds. In L-Glu-γ-P the phosphinic group acts as a bioisostere of the glutamate γ-carboxyl group allowing the molecule to be a substrate of Escherichia coli glutamate decarboxylase, a pyridoxal 5'-phosphate-dependent α-decarboxylase. In addition, the L-Glu-γ-P decarboxylation product, GABA-P, is further metabolized by bacterial GABA-transaminase, another pyridoxal 5'-phosphate-dependent enzyme, and succinic semialdehyde dehydrogenase, a NADP-dependent enzyme. The product of these consecutive reactions, the so-called GABA shunt, is succinate-P, the H-phosphinic analog of succinate, a tricarboxylic acid cycle intermediate. Notably, L-Glu-γ-P displays antibacterial activity in the same concentration range of well-established antibiotics in E. coli. The dipeptide L-Leu-Glu-γ-P was shown to display an even higher efficacy, likely as a consequence of an improved penetration into the bacteria. Herein, to further understand the intracellular effects of L-Glu-γ-P, H NMR-based metabolomics, and LC-MS-based shotgun proteomics were used. This study included also the keto-derivative of L-Glu-γ-P α-ketoglutarate-γ-P (α-KG-γ-P), which also exhibits antimicrobial activity. L-Glu-γ-P and α-KG-γ-P are found to similarly impact bacterial metabolism, although the overall effect of α-KG-γ-P is more pervasive. Notably, α-KG-γ-P is converted intracellularly into L-Glu-γ-P, but the opposite was not found. In general, both molecules impact the pathways where aspartate, glutamate, and glutamine are used as precursors for the biosynthesis of related metabolites, activate the acid stress response, and deprive cells of nitrogen. This work highlights the multi-target drug potential of L-Glu-γ-P and α-KG-γ-P and paves the way for their exploitation as antimicrobials.
去甲基膦丝氨酸(L-Glu-γ-P)是谷氨酸的 H-膦酸类似物,具有碳-磷-氢(C-P-H)键。在 L-Glu-γ-P 中,膦酸基团充当谷氨酸 γ-羧基的生物等排体,使分子成为大肠杆菌谷氨酸脱羧酶的底物,一种依赖吡哆醛 5'-磷酸的α-脱羧酶。此外,L-Glu-γ-P 的脱羧产物 GABA-P 进一步被细菌 GABA-转氨酶代谢,另一种依赖吡哆醛 5'-磷酸的酶,以及琥珀酸半醛脱氢酶,一种依赖 NADP 的酶。这些连续反应的产物,即所谓的 GABA 分流,是琥珀酸-P,琥珀酸的 H-膦酸类似物,是三羧酸循环中间产物。值得注意的是,L-Glu-γ-P 在大肠杆菌中显示出与现有抗生素相当的抗菌活性。二肽 L-Leu-Glu-γ-P 显示出更高的功效,可能是由于其更好地渗透到细菌中。在此,为了进一步了解 L-Glu-γ-P 的细胞内作用,使用了基于 1H NMR 的代谢组学和基于 LC-MS 的 shotgun 蛋白质组学。本研究还包括 L-Glu-γ-P 的酮衍生物α-酮戊二酸-γ-P(α-KG-γ-P),它也具有抗菌活性。L-Glu-γ-P 和 α-KG-γ-P 被发现同样影响细菌代谢,尽管 α-KG-γ-P 的整体影响更为广泛。值得注意的是,α-KG-γ-P 被细胞内转化为 L-Glu-γ-P,但没有发现相反的情况。一般来说,这两种分子都影响天冬氨酸、谷氨酸和谷氨酰胺作为相关代谢物生物合成前体的途径,激活酸应激反应,并剥夺细胞中的氮。这项工作突出了 L-Glu-γ-P 和 α-KG-γ-P 的多靶药物潜力,并为它们作为抗菌剂的开发铺平了道路。