Suppr超能文献

CardioGuard:人工智能驱动的心电图认证混合神经网络,用于远程医疗系统中的预测性健康监测。

CardioGuard: AI-driven ECG authentication hybrid neural network for predictive health monitoring in telehealth systems.

机构信息

Departamento de Sistemas Informaticos, Universidad Politécnica de Madrid, Spain.

Department of Computer Science, National University of Computing & Emerging Sciences, Pakistan.

出版信息

SLAS Technol. 2024 Oct;29(5):100193. doi: 10.1016/j.slast.2024.100193. Epub 2024 Sep 20.

Abstract

The increasing integration of telehealth systems underscores the importance of robust and secure methods for patient data management. Traditional authentication methods, such as passwords and PINs, are prone to breaches, underscoring the need for more secure alternatives. Therefore, there is a need for alternative approaches that provide enhanced security and user convenience. Biometric-based authentication systems uses individuals unique physical or behavioral characteristics for identification, have emerged as a promising solution. Specifically, Electrocardiogram (ECG) signals have gained attention among various biometric modalities due to their uniqueness, stability, and non-invasiveness. This paper presents CardioGaurd, a deep learning-based authentication system that leverages ECG signals-unique, stable, and non-invasive biometric markers. The proposed system uses a hybrid Convolution and Long short-term memory based model to obtain rich characteristics from the ECG signal and classify it as authentic or fake. CardioGaurd not only ensures secure access but also serves as a predictive tool by analyzing ECG patterns that could indicate early signs of cardiovascular abnormalities. This dual functionality enhances patient security and contributes to AI-driven disease prevention and early detection. Our results demonstrate that CardioGaurd offers superior performance in both security and potential predictive health insights compared to traditional models, thus supporting a shift towards more proactive and personalized telehealth solutions.

摘要

远程医疗系统的日益融合凸显了稳健、安全的患者数据管理方法的重要性。传统的认证方法,如密码和 PIN 码,容易受到攻击,这凸显了需要更安全的替代方法。因此,需要替代方法来提供增强的安全性和用户便利性。基于生物特征的认证系统利用个体独特的生理或行为特征进行身份识别,已成为一种有前途的解决方案。具体来说,心电图 (ECG) 信号在各种生物识别模式中引起了关注,因为它们具有独特性、稳定性和非侵入性。本文提出了一种基于深度学习的认证系统 CardioGaurd,该系统利用 ECG 信号——独特、稳定和非侵入性的生物识别标记。所提出的系统使用混合卷积和长短期记忆模型从 ECG 信号中获取丰富的特征,并将其分类为真实或伪造。CardioGaurd 不仅确保了安全访问,还通过分析可能表明心血管异常早期迹象的 ECG 模式,作为一种预测工具。这种双重功能增强了患者的安全性,并有助于人工智能驱动的疾病预防和早期检测。我们的结果表明,CardioGaurd 在安全性和潜在的预测健康洞察方面的表现均优于传统模型,因此支持向更主动和个性化的远程医疗解决方案转变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验