Ocean College, Zhejiang University, Zhoushan 316021, China.
Ocean College, Zhejiang University, Zhoushan 316021, China.
Bioresour Technol. 2024 Dec;413:131495. doi: 10.1016/j.biortech.2024.131495. Epub 2024 Sep 20.
Filamentous fungi's secondary metabolites (SMs) possess significant application owing to their distinct structure and diverse bioactivities, yet their restricted yield levels often hinder further research and application. The study developed a response surface methodology-artificial neural network (RSM-ANN) strategy with multi-parameter optimizations of the ANN model to optimize medium for the production of two high-value fungal SMs, echinocandin E and paraherquamide A. Multi-parameter optimization of the ANN model was achieved through stratifying experimental data, fully adjusting neural network internals, and evaluating metaheuristic algorithms for optimal initial weights and biases. Experimental validation of models revealed that ANN-genetic algorithm models outperformed traditional RSM models in terms of determination coefficients, accuracy, and mean squared errors. ANN models showed outstanding robustness across a variety of fungal species, mediums, and experimental designs (Central Composite Design or Box-Behnken Design). This work refines the RSM-ANN optimization technique to increase fungal SM production efficiency, enabling industrial-scale production and applications.
丝状真菌的次生代谢产物(SMs)由于其独特的结构和多样的生物活性而具有重要的应用价值,但它们的产量水平有限,往往会阻碍进一步的研究和应用。本研究开发了一种响应面法-人工神经网络(RSM-ANN)策略,通过多参数优化 ANN 模型,对两种高价值真菌 SMs(棘白菌素 E 和 paraherquamide A)的生产培养基进行优化。通过分层实验数据、充分调整神经网络内部以及评估启发式算法来优化初始权重和偏差,实现了 ANN 模型的多参数优化。模型的实验验证表明,ANN-遗传算法模型在决定系数、准确性和均方误差方面优于传统的 RSM 模型。ANN 模型在各种真菌种类、培养基和实验设计(中心复合设计或 Box-Behnken 设计)中表现出出色的稳健性。这项工作改进了 RSM-ANN 优化技术,以提高真菌 SM 生产效率,实现工业规模的生产和应用。