Suppr超能文献

通过网络分析对胰腺导管腺癌进行阶段分析。

Stage analysis of pancreatic ductal adenocarcinoma via network analysis.

作者信息

Bahadorimonfared Ayad, Farahani Masoumeh, Rezaei Tavirani Mostafa, Razzaghi Zahra, Arjmand Babak, Rezaei Mitra, Nikzamir Abdolrahim, Ehsani Ardakani Mohammad Javad, Mansouri Vahid

机构信息

Department of Health & Community Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Gastroenterol Hepatol Bed Bench. 2024;17(3):297-3030. doi: 10.22037/ghfbb.v17i3.2887.

Abstract

AIM

This study aimed to introduce a biomarker panel to detect pancreatic ductal adenocarcinoma (PDAC) in the early stage, and also differentiate of stages from each other.

BACKGROUND

PDAC is a lethal cancer with poor prognosis and overall survival.

METHODS

Gene expression profiles of PDAC patients were extracted from the Gene Expression Omnibus (GEO) database. The genes that were significantly differentially expressed (DEGs) for Stages I, II, and III in comparison to the healthy controls were identified. The determined DEGs were assessed via protein-protein interaction (PPI) network analysis, and the hub-bottleneck nodes of analyzed networks were introduced.

RESULTS

A number of 140, 874, and 1519 significant DEGs were evaluated via PPI network analysis. A biomarker panel including ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 is presented as a biomarker panel to detect PDAC in the early stage. Two biomarker panels are suggested to recognize other stages of illness.

CONCLUSION

It can be concluded that ALB, CTNNB1, COL1A1, POSTN, LUM, and ANXA2 and also FN1, HSP90AA1, LOX, ANXA5, SERPINE1, and WWP2 beside GAPDH, AKT1, EGF, CASP3 are suitable sets of gene to separate stages of PDAC.

摘要

目的

本研究旨在引入一种生物标志物组合,用于早期检测胰腺导管腺癌(PDAC),并区分不同阶段。

背景

PDAC是一种预后和总生存期较差的致命性癌症。

方法

从基因表达综合数据库(GEO)中提取PDAC患者的基因表达谱。确定与健康对照相比,I期、II期和III期有显著差异表达(DEG)的基因。通过蛋白质-蛋白质相互作用(PPI)网络分析评估所确定的DEG,并引入分析网络的枢纽瓶颈节点。

结果

通过PPI网络分析评估了140、874和1519个显著DEG。提出了一个包括ALB、CTNNB1、COL1A1、POSTN、LUM和ANXA2的生物标志物组合,作为早期检测PDAC的生物标志物组合。建议使用两个生物标志物组合来识别疾病的其他阶段。

结论

可以得出结论,ALB、CTNNB1、COL1A1、POSTN、LUM和ANXA2,以及除GAPDH、AKT1、EGF、CASP3之外的FN1、HSP90AA1、LOX、ANXA5、SERPINE1和WWP2是区分PDAC不同阶段的合适基因集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5324/11413388/001bafbb572b/GHFBB-17-297-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验