Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 (USA), Fax: (+01) 301-496-6608.
Chemphyschem. 2014 Mar 17;15(4):794-800. doi: 10.1002/cphc.201300831. Epub 2014 Jan 16.
We use Richardson-Lucy (RL) deconvolution to combine multiple images of a simulated object into a single image in the context of modern fluorescence microscopy techniques. RL deconvolution can merge images with very different point-spread functions, such as in multiview light-sheet microscopes,1, 2 while preserving the best resolution information present in each image. We show that RL deconvolution is also easily applied to merge high-resolution, high-noise images with low-resolution, low-noise images, relevant when complementing conventional microscopy with localization microscopy. We also use RL deconvolution to merge images produced by different simulated illumination patterns, relevant to structured illumination microscopy (SIM)3, 4 and image scanning microscopy (ISM). The quality of our ISM reconstructions is at least as good as reconstructions using standard inversion algorithms for ISM data, but our method follows a simpler recipe that requires no mathematical insight. Finally, we apply RL deconvolution to merge a series of ten images with varying signal and resolution levels. This combination is relevant to gated stimulated-emission depletion (STED) microscopy, and shows that merges of high-quality images are possible even in cases for which a non-iterative inversion algorithm is unknown.
我们使用 Richardson-Lucy (RL) 反卷积技术,将模拟物体的多张图像在现代荧光显微镜技术的背景下合并为单个图像。RL 反卷积可以合并具有非常不同点扩散函数的图像,例如在多视角光片显微镜中,1,2 同时保留每个图像中存在的最佳分辨率信息。我们表明,RL 反卷积也可以轻松地合并高分辨率、高噪声图像与低分辨率、低噪声图像,这在将定位显微镜与传统显微镜互补时非常重要。我们还使用 RL 反卷积合并由不同模拟照明模式产生的图像,这与结构光照明显微镜 (SIM)3,4 和图像扫描显微镜 (ISM) 相关。我们的 ISM 重建质量至少与 ISM 数据的标准反演算法的重建质量一样好,但我们的方法遵循更简单的方案,不需要数学洞察力。最后,我们应用 RL 反卷积合并具有不同信号和分辨率水平的十张图像系列。这种组合与门控受激发射损耗 (STED) 显微镜相关,表明即使对于未知非迭代反演算法的情况,也可以进行高质量图像的合并。