Ryan V William G, Imami Ali Sajid, Ali Sajid Hunter, Vergis John, Zhang Xiaolu, Meller Jarek, Shukla Rammohan, McCullumsmith Robert
Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
Bioinformation. 2024 Jul 31;20(7):700-704. doi: 10.6026/973206300200700. eCollection 2024.
Omics studies use large-scale high-throughput data to explain changes underlying different traits or conditions. However, omics analysis often results in long lists of pathways that are difficult to interpret. Therefore, it is of interest to describe a tool named PAVER (Pathway Analysis Visualization with Embedding Representations) for large scale genomic analysis. PAVER curates similar pathways into groups, identifies the pathway most representative of each group, and provides publication-ready intuitive visualizations. PAVER clusters pathways defined by their vector embedding representations and then identifies the term most cosine similar to its respective cluster's average embedding. PAVER can integrate multiple pathway analyses, highlight relevant biological insights, and work with any pathway database.
组学研究使用大规模高通量数据来解释不同性状或状况背后的变化。然而,组学分析往往会产生一长串难以解读的通路列表。因此,开发一种名为PAVER(基于嵌入表示的通路分析可视化)的工具用于大规模基因组分析很有意义。PAVER将相似的通路整理成组,识别每组中最具代表性的通路,并提供可供发表的直观可视化结果。PAVER根据通路的向量嵌入表示对通路进行聚类,然后识别与其各自聚类的平均嵌入余弦相似度最高的术语。PAVER可以整合多种通路分析,突出相关的生物学见解,并且可以与任何通路数据库配合使用。