Yao Zengwu, Han Junping, Wu Jinhui, Li Miaomiao, Chen Ruyue, Jian Mi, Yang Zhensong, Wang Xixun, Zhang Yifei, Hu Jinchen, Jiang Lixin
Yantai Yuhuangding Hospital, Shandong University, Shandong, China.
Yantai Yuhuangding Hospital, Shandong, China.
Heliyon. 2024 Sep 6;10(18):e37402. doi: 10.1016/j.heliyon.2024.e37402. eCollection 2024 Sep 30.
IGF-binding protein 1 () is a key regulator of insulin-like growth factors, impacting biological processes, including cancer progression and prognosis.
This study investigates genetic alterations affecting IGFBP1 expression in tumors using data from The Cancer Genome Atlas (TCGA) PanCancer Atlas via cBioPortal. We analyzed samples from 32 cancer types for mutation sites, including deep deletions, amplifications, and mutations. RNA-seq data were normalized using log2(value + 1). Statistical analyses, including survival outcomes, were conducted using R packages like ggplot2, stats, and car. Kaplan-Meier survival curves and log-rank tests assessed overall survival (OS) and progression-free survival (PFS). Univariate Cox regression was used to develop nomogram models for OS. Functional consequences of IGFBP1 mutations were explored through protein structure, stability, and IGF interaction analyses. Protein-protein interaction networks and functional enrichment were analyzed using GEPIA2, STRING, and Cytoscape. Gene Ontology (GO), KEGG, and Gene Set Enrichment Analysis (GSEA) provided insights into affected biological pathways.
Pan-cancer analysis revealed diverse expression patterns, including significant upregulation in cutaneous melanoma (SKCM) and downregulation in lung adenocarcinoma (LUAD) and stomach adenocarcinoma (STAD). Specifically, elevated IGFBP1 expression in SKCM patients led to a 25 % improvement in 5-year survival. In contrast, higher levels in LUAD and OV patients resulted in a 30 % and 20 % decrease in survival, respectively. Elevated levels are significantly linked to advanced tumor stage and grade in OV and LUAD, affecting prognostic outcomes. Nomogram models for OV, SKCM, LUAD, and STAD showed 's predictive strength with AUC values ranging from 0.70 to 0.85, indicating its diagnostic potential. Genetic analyses revealed mutations in IGFBP1 in 12 % of STAD cases and 10 % of UCEC cases, indicating significant genetic variation. Immune analysis showed that high expression significantly influenced immune cell infiltration, particularly macrophages and CD8 T cells, thereby affecting survival in LUAD and OV. Functional enrichment and gene set enrichment analysis identified involvement in crucial pathways, such as cell cycle regulation, immune response, and PD-1 signaling, highlighting its biological impact. Additionally, expression delineates distinct molecular and immune subtypes, correlating with specific cancer behaviors and immune patterns.
These findings highlight IGFBP1's potential as a biomarker and therapeutic target, particularly for immunoregulation and cancer subtype stratification.
胰岛素样生长因子结合蛋白1(IGFBP1)是胰岛素样生长因子的关键调节因子,影响包括癌症进展和预后在内的生物学过程。
本研究通过cBioPortal使用来自癌症基因组图谱(TCGA)泛癌图谱的数据,调查影响肿瘤中IGFBP1表达的基因改变。我们分析了32种癌症类型样本的突变位点,包括深度缺失、扩增和突变。RNA测序数据使用log2(值 + 1)进行标准化。使用ggplot2、stats和car等R包进行包括生存结果在内的统计分析。采用Kaplan-Meier生存曲线和对数秩检验评估总生存期(OS)和无进展生存期(PFS)。使用单变量Cox回归建立OS的列线图模型。通过蛋白质结构、稳定性和IGF相互作用分析探索IGFBP1突变的功能后果。使用GEPIA2、STRING和Cytoscape分析蛋白质-蛋白质相互作用网络和功能富集。基因本体论(GO)、KEGG和基因集富集分析(GSEA)深入了解受影响的生物学途径。
泛癌分析揭示了不同的表达模式,包括皮肤黑色素瘤(SKCM)中显著上调以及肺腺癌(LUAD)和胃腺癌(STAD)中下调。具体而言,SKCM患者中IGFBP1表达升高导致5年生存率提高25%。相比之下,LUAD和卵巢癌(OV)患者中较高的IGFBP1水平分别导致生存率降低30%和20%。OV和LUAD中IGFBP1水平升高与肿瘤晚期和分级显著相关,影响预后结果。OV、SKCM、LUAD和STAD的列线图模型显示IGFBP1具有预测强度,AUC值范围为0.70至0.85,表明其诊断潜力。基因分析显示,12%的STAD病例和10%的子宫内膜癌(UCEC)病例中存在IGFBP1突变,表明存在显著的基因变异。免疫分析表明,高IGFBP1表达显著影响免疫细胞浸润,尤其是巨噬细胞和CD8 T细胞,从而影响LUAD和OV的生存。功能富集和基因集富集分析确定IGFBP1参与关键途径,如细胞周期调控、免疫反应和PD-1信号传导,突出了其生物学影响。此外,IGFBP1表达描绘了不同的分子和免疫亚型,与特定的癌症行为和免疫模式相关。
这些发现突出了IGFBP1作为生物标志物和治疗靶点的潜力,特别是在免疫调节和癌症亚型分层方面。