Suppr超能文献

中国大陆县级层面碳排放的时空动态变化及影响因素(1997 - 2019年)b

Spatio-temporal dynamics and influencing factors of carbon emissions (1997-2019) at county level in mainland China b.

作者信息

Zhu Nina, Li Xue, Yang Sibo, Ding Yi, Zeng Gang

机构信息

School of Event and Communication, Shanghai University of International Business and Economics, Shanghai, 201620, China.

School of International Economics and Trade, Shanghai Lixin University of Accounting and Finance, 201620, China.

出版信息

Heliyon. 2024 Aug 30;10(18):e37245. doi: 10.1016/j.heliyon.2024.e37245. eCollection 2024 Sep 30.

Abstract

Global warming caused by extensive carbon emissions is a critical global issue. However, the lack of county-level carbon emissions data in China hampers comprehensive research. To bridge this gap, we employ a deep learning method on nighttime light data sets to estimate county-level carbon emissions in mainland China from 1997 to 2019. Our key contributions include the successful derivation of more reliable data, revealing the evolution of spatial dynamics and emissions epicenters. Moreover, we identify a novel inverted N-shaped relationship between gross domestic product per capita and carbon emissions in the eastern and western regions, as well as an N-shaped relationship in the central region, challenging mainstream wisdom. Additionally, we highlight the significant impacts of population density, industrial structure, and carbon intensity on carbon emissions. Our study also unveils the nuanced effects of government spending, which exhibits both inhibitory and region-specific influences. These findings serve to enhance our understanding of the factors influencing carbon emissions and contribute to informed decision-making in addressing climate change-related challenges.

摘要

广泛的碳排放导致的全球变暖是一个关键的全球性问题。然而,中国县级碳排放数据的缺乏阻碍了全面研究。为了弥补这一差距,我们采用深度学习方法处理夜间灯光数据集,以估算1997年至2019年中国大陆的县级碳排放。我们的主要贡献包括成功推导了更可靠的数据,揭示了空间动态和排放中心的演变。此外,我们发现东部和西部地区人均国内生产总值与碳排放之间存在一种新的倒N形关系,中部地区存在N形关系,这对主流观点提出了挑战。此外,我们强调了人口密度、产业结构和碳强度对碳排放的重大影响。我们的研究还揭示了政府支出的细微影响,它既表现出抑制作用,也有区域特定影响。这些发现有助于增强我们对影响碳排放因素的理解,并为应对气候变化相关挑战的明智决策做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c71/11416259/7bd391a92fef/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验