Lakshmi B Durga, Vamsi Krishna Betha Veera, Rao P Tirupathi, Marukurti Abhinash, K Vasudha, Sk Esub Basha, Rao K Ramachandra
Crystal Growth and Nano-Science Research Centre, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh 533105, India.
Department of Physics, Adikavi Nannaya University, Rajamahendravaram, Andhra Pradesh 533296, India.
ACS Omega. 2024 Aug 30;9(37):38396-38408. doi: 10.1021/acsomega.4c01727. eCollection 2024 Sep 17.
One of the primary concerns in the field of green synthesis of nanoparticles (NPs) utilizing plant materials is the scarcity of high purity, challenges in achieving large-scale production, and limited global accessibility. Hygienic preparation and safe storage of plant extracts are also considerable challenges in this field. So, an investigation was started to overcome these limitations. Virgin coconut oil (VCO) in its purest form is available commercially all over the world. Also, it has high medicinal value with excellent biomedical applications. Very limited work has been reported on oils as bio reducers and stabilizers. In those reports, they used a few chemicals as mediators in the processes of synthesis and cleaning. So, to the best of our knowledge, for the first time, zinc oxide (ZnO) NPs were synthesized using VCO as a reducing and capping agent with zero chemical mediators. A comprehensive investigation of the structural, microstructural, and optical properties was reported. X-ray diffraction confirms the formation of VCO-ZnO NPs with an average crystallite size of 32.81 nm in a hexagonal structure. UV characteristics confirm quantum confinement through a well-defined SPR near 223 nm with fwhm of 67 nm and a direct band gap at 3.96 eV. FTIR reveals the capping of VCO through carboxylic functional groups, particularly the -COO- group of coconut oil at 1770 cm with a shift of about 30 cm compared to plain VCO. TEM confirms the polycrystalline nature with nearly spherical and 10-22 nm particle size. The zeta potential of -15.4 ± 5.0 mV signifies the stability and antiagglomeration properties. FESEM with EDS results confirms morphological excellence, the purity level of synthesized NPs (99.5%), and the prominent scalability of NPs (84.38% yield). Finally, as-synthesized VCO-ZnO NPs showed very good antioxidant (IC 78.991, 51.464, and 4.677 μg/mL in DPPH, ABTS, and FRAP assays, respectively), anti-inflammatory (IC 22.42 μg/mL in protein denaturation), antimicrobial (MIC 0.156 mg/mL for and 0.316 mg/mL for ), and antidiabetic properties (IC 88.45 and 147.67 μg/mL for α-amylase and α-glucosidase assays, respectively).
利用植物材料进行纳米颗粒(NPs)绿色合成领域的主要关注点之一是高纯度材料的稀缺、大规模生产面临的挑战以及全球可及性有限。植物提取物的卫生制备和安全储存也是该领域相当大的挑战。因此,开始了一项调查以克服这些限制。最纯净形式的初榨椰子油(VCO)在全球各地都有商业供应。此外,它具有很高的药用价值,具有出色的生物医学应用。关于油作为生物还原剂和稳定剂的报道非常有限。在那些报道中,他们在合成和清洗过程中使用了一些化学物质作为介质。所以,据我们所知,首次使用VCO作为还原和封端剂,零化学介质合成了氧化锌(ZnO)纳米颗粒。报道了对其结构、微观结构和光学性质的全面研究。X射线衍射证实形成了六方结构的VCO-ZnO纳米颗粒,平均晶粒尺寸为32.81nm。紫外特性通过在223nm附近定义明确的表面等离子体共振(SPR)证实了量子限制,半高宽为67nm,直接带隙为3.96eV。傅里叶变换红外光谱(FTIR)显示VCO通过羧基官能团封端,特别是椰子油的-COO-基团在1770cm处,与纯VCO相比有大约30cm的位移。透射电子显微镜(TEM)证实了其多晶性质,粒径接近球形,为10-22nm。-15.4±5.0mV的zeta电位表明其稳定性和抗团聚性能。场发射扫描电子显微镜(FESEM)与能谱(EDS)结果证实形态优异、合成纳米颗粒的纯度水平(99.5%)以及纳米颗粒的显著可扩展性(产率84.38%)。最后,合成的VCO-ZnO纳米颗粒在抗氧化(在二苯基苦味酰基自由基(DPPH)、2,2'-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)和铁离子还原抗氧化能力(FRAP)测定中,IC分别为78.991、51.464和4.677μg/mL)、抗炎(在蛋白质变性测定中IC为22.42μg/mL)、抗菌(对[具体菌种1]的最低抑菌浓度(MIC)为0.156mg/mL)、抗糖尿病(在α-淀粉酶和α-葡萄糖苷酶测定中IC分别为88.45和147.67μg/mL)方面表现出非常好的性能。
需注意,原文中部分英文缩写未给出中文全称,翻译时保留了英文缩写,以便读者对照原文理解。同时,对于一些特定的医学检测指标等专业术语,采用了业内常用的中文表述方式。