Fuchs Till, Ortmann Till, Becker Juri, Haslam Catherine G, Ziegler Maya, Singh Vipin Kumar, Rohnke Marcus, Mogwitz Boris, Peppler Klaus, Nazar Linda F, Sakamoto Jeff, Janek Jürgen
Institute of Physical Chemistry and Center for Materials Research, Justus Liebig University Giessen, Giessen, Germany.
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
Nat Mater. 2024 Dec;23(12):1678-1685. doi: 10.1038/s41563-024-02006-8. Epub 2024 Sep 23.
'Anode-free' or, more fittingly, metal reservoir-free cells could drastically improve current solid-state battery technology by achieving higher energy density, improving safety and simplifying manufacturing. Various strategies have been reported so far to control the morphology of electrodeposited alkali metal films to be homogeneous and dense, but until now, the microstructure of electrodeposited alkali metal is unknown, and a suitable characterization route is yet to be identified. Here we establish a reproducible protocol for characterizing the size and orientation of metal grains in differently processed lithium and sodium samples by a combination of focused ion beam and electron backscatter diffraction. Electrodeposited films at Cu|LiTaLaZrO, steel|LiPSCl and Al|NaZrSiPO interfaces were characterized. The analyses show large grain sizes (>100 µm) within these films and a preferential orientation of grain boundaries. Furthermore, metal growth and dissolution were investigated using in situ electron backscatter diffraction, showing a dynamic grain coarsening during electrodeposition and pore formation within grains during dissolution. Our methodology and results deepen the research field for the improvement of solid-state battery performance through a characterization of the alkali metal microstructure.
“无阳极”,或者更确切地说,无金属储存器的电池,通过实现更高的能量密度、提高安全性和简化制造工艺,能够极大地改进当前的固态电池技术。到目前为止,已经报道了各种策略来控制电沉积碱金属薄膜的形态,使其均匀且致密,但直到现在,电沉积碱金属的微观结构仍然未知,并且尚未确定合适的表征方法。在这里,我们通过聚焦离子束和电子背散射衍射相结合的方法,建立了一种可重复的方案,用于表征不同处理的锂和钠样品中金属晶粒的尺寸和取向。对铜|锂钽镧锆氧化物、钢|锂硫磷氯、铝|钠锆硅磷氧界面处的电沉积薄膜进行了表征。分析表明,这些薄膜内的晶粒尺寸较大(>100μm),并且晶界存在择优取向。此外,使用原位电子背散射衍射研究了金属的生长和溶解过程,结果表明在电沉积过程中晶粒动态粗化,在溶解过程中晶粒内部形成孔隙。我们的方法和结果通过对碱金属微观结构的表征,深化了通过改进固态电池性能的研究领域。