Suppr超能文献

基于灰质的1个月龄婴儿脑空间统计框架:对婴儿期灰质微观结构的见解。

Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy.

作者信息

DiPiero Marissa A, Rodrigues Patrik Goncalves, Justman McKaylie, Roche Sophia, Bond Elizabeth, Gonzalez Jose Guerrero, Davidson Richard J, Planalp Elizabeth M, Dean Douglas C

机构信息

Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA.

Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Brain Struct Funct. 2024 Dec;229(9):2445-2459. doi: 10.1007/s00429-024-02853-w. Epub 2024 Sep 24.

Abstract

The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.

摘要

从胎儿期到生命早期的神经发育阶段体现了一个关键的高增长和可塑性窗口,许多被认为与神经发育和精神疾病相关的差异首先在这个阶段出现。详细了解皮质灰质微观结构的发育轨迹对于刻画可能有助于应对未来智力、行为和精神挑战的神经发育差异模式至关重要。基于神经突方向离散密度成像(NODDI)的灰质空间统计(GBSS)框架利用来自NODDI模型的信息,在限制不同空间采集图像之间的部分容积污染和配准错误的同时,实现对灰质微观结构的灵敏刻画。然而,发育不全的大脑对比度有限,给使用婴儿扩散磁共振成像(dMRI)数据实施该框架带来了挑战。在这项工作中,我们旨在研究婴儿皮质微观结构的发育。我们利用NODDI GBSS框架,并对原始框架提出改进,旨在改善婴儿大脑中灰质的描绘和特征刻画。采用这种方法,我们对出生后第一个月内婴儿发育中的灰质微观结构组织的年龄关系进行了横断面研究,并揭示了与灰质结构的广泛关系。

相似文献

3
Gray Matter Surface based Spatial Statistics (GS-BSS) in Diffusion Microstructure.基于灰质表面的扩散微结构空间统计学(GS-BSS)
Med Image Comput Comput Assist Interv. 2017 Sep;10433:638-646. doi: 10.1007/978-3-319-66182-7_73. Epub 2017 Sep 4.

本文引用的文献

7
The Art, Science, and Secrets of Scanning Young Children.扫描幼儿的艺术、科学与奥秘。
Biol Psychiatry. 2023 May 15;93(10):858-860. doi: 10.1016/j.biopsych.2022.09.025. Epub 2022 Sep 29.
8
The Developing Human Connectome Project Neonatal Data Release.人类连接组计划新生儿数据发布
Front Neurosci. 2022 May 23;16:886772. doi: 10.3389/fnins.2022.886772. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验