Naeem Muhammad Rehan, Amin Rashid, Farhan Muhammad, Alotaibi Faiz Abdullah, Alnfiai Mrim M, Sampedro Gabriel Avelino, Karovič Vincent
Department of Computer Science, University of Engineering and Technology Taxila, Taxila, Punjab, Pakistan.
School of Science and Engineering, School of Science and Engineering, Al Akhawayn University in Ifrane, Ifrane, Ifrane, Morocco.
PeerJ Comput Sci. 2024 Sep 20;10:e2264. doi: 10.7717/peerj-cs.2264. eCollection 2024.
Collective intelligence systems like Chat Generative Pre-Trained Transformer (ChatGPT) have emerged. They have brought both promise and peril to cybersecurity and privacy protection. This study introduces novel approaches to harness the power of artificial intelligence (AI) and big data analytics to enhance security and privacy in this new era. Contributions could explore topics such as: leveraging natural language processing (NLP) in ChatGPT-like systems to strengthen information security; evaluating privacy-enhancing technologies to maximize data utility while minimizing personal data exposure; modeling human behavior and agency to build secure and ethical human-centric systems; applying machine learning to detect threats and vulnerabilities in a data-driven manner; using analytics to preserve privacy in large datasets while enabling value creation; crafting AI techniques that operate in a trustworthy and explainable manner. This article advances the state-of-the-art at the intersection of cybersecurity, privacy, human factors, ethics, and cutting-edge AI, providing impactful solutions to emerging challenges. Our research presents a revolutionary approach to malware detection that leverages deep learning (DL) based methodologies to automatically learn features from raw data. Our approach involves constructing a grayscale image from a malware file and extracting features to minimize its size. This process affords us the ability to discern patterns that might remain hidden from other techniques, enabling us to utilize convolutional neural networks (CNNs) to learn from these grayscale images and a stacking ensemble to classify malware. The goal is to model a highly complex nonlinear function with parameters that can be optimized to achieve superior performance. To test our approach, we ran it on over 6,414 malware variants and 2,050 benign files from the MalImg collection, resulting in an impressive 99.86 percent validation accuracy for malware detection. Furthermore, we conducted a classification experiment on 15 malware families and 13 tests with varying parameters to compare our model to other comparable research. Our model outperformed most of the similar research with detection accuracy ranging from 47.07% to 99.81% and a significant increase in detection performance. Our results demonstrate the efficacy of our approach, which unlocks the hidden patterns that underlie complex systems, advancing the frontiers of computational security.
像聊天生成预训练变换器(ChatGPT)这样的集体智能系统已经出现。它们给网络安全和隐私保护带来了希望和风险。本研究介绍了利用人工智能(AI)和大数据分析的力量来增强这个新时代的安全性和隐私性的新方法。贡献可能探索诸如以下主题:在类似ChatGPT的系统中利用自然语言处理(NLP)来加强信息安全;评估隐私增强技术以在最小化个人数据暴露的同时最大化数据效用;对人类行为和能动性进行建模以构建安全且符合道德的以人类为中心的系统;应用机器学习以数据驱动的方式检测威胁和漏洞;使用分析方法在大型数据集中保护隐私的同时实现价值创造;设计以可信赖和可解释的方式运行的人工智能技术。本文推进了网络安全、隐私、人为因素、伦理和前沿人工智能交叉领域的技术水平,为新出现的挑战提供了有影响力的解决方案。我们的研究提出了一种革命性的恶意软件检测方法,该方法利用基于深度学习(DL)的方法从原始数据中自动学习特征。我们的方法包括从恶意软件文件构建灰度图像并提取特征以最小化其大小。这个过程使我们有能力辨别其他技术可能无法发现的模式,使我们能够利用卷积神经网络(CNN)从这些灰度图像中学习,并使用堆叠集成来对恶意软件进行分类。目标是用可以优化以实现卓越性能的参数对一个高度复杂的非线性函数进行建模。为了测试我们的方法,我们在来自MalImg集合的6414多个恶意软件变体和2050个良性文件上运行它,恶意软件检测的验证准确率达到了令人印象深刻的99.86%。此外,我们对15个恶意软件家族进行了分类实验,并进行了13次具有不同参数的测试,以将我们的模型与其他可比研究进行比较。我们的模型在检测准确率从47.07%到99.81%的范围内优于大多数类似研究,并且检测性能有显著提高。我们的结果证明了我们方法的有效性,该方法揭示了复杂系统背后隐藏的模式,推进了计算安全的前沿。