Suppr超能文献

通过将关联推断扩展到多个层次来进行药物再利用的生物医学知识图学习。

Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers.

机构信息

Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, Republic of Korea.

AIGENDRUG Co., Ltd., Seoul, 08826, Republic of Korea.

出版信息

Nat Commun. 2023 Jun 15;14(1):3570. doi: 10.1038/s41467-023-39301-y.

Abstract

Computational drug repurposing aims to identify new indications for existing drugs by utilizing high-throughput data, often in the form of biomedical knowledge graphs. However, learning on biomedical knowledge graphs can be challenging due to the dominance of genes and a small number of drug and disease entities, resulting in less effective representations. To overcome this challenge, we propose a "semantic multi-layer guilt-by-association" approach that leverages the principle of guilt-by-association - "similar genes share similar functions", at the drug-gene-disease level. Using this approach, our model DREAMwalk: Drug Repurposing through Exploring Associations using Multi-layer random walk uses our semantic information-guided random walk to generate drug and disease-populated node sequences, allowing for effective mapping of both drugs and diseases in a unified embedding space. Compared to state-of-the-art link prediction models, our approach improves drug-disease association prediction accuracy by up to 16.8%. Moreover, exploration of the embedding space reveals a well-aligned harmony between biological and semantic contexts. We demonstrate the effectiveness of our approach through repurposing case studies for breast carcinoma and Alzheimer's disease, highlighting the potential of multi-layer guilt-by-association perspective for drug repurposing on biomedical knowledge graphs.

摘要

计算药物再利用旨在通过利用高通量数据,通常是以生物医学知识图谱的形式,为现有药物确定新的适应症。然而,由于基因的主导地位和药物和疾病实体的数量较少,学习生物医学知识图谱具有挑战性,导致表示效果不佳。为了克服这一挑战,我们提出了一种“语义多层关联有罪”方法,该方法利用关联有罪的原则 - “相似的基因具有相似的功能”,在药物 - 基因 - 疾病层面上。使用这种方法,我们的模型 DREAMwalk:通过使用多层随机游走探索关联进行药物再利用(Drug Repurposing through Exploring Associations using Multi-layer random walk),利用我们的语义信息引导的随机游走生成药物和疾病填充的节点序列,允许在统一的嵌入空间中对药物和疾病进行有效映射。与最先进的链接预测模型相比,我们的方法将药物 - 疾病关联预测的准确性提高了 16.8%。此外,对嵌入空间的探索揭示了生物和语义上下文之间的良好协调。我们通过乳腺癌和阿尔茨海默病的再利用案例研究证明了我们方法的有效性,突出了生物医学知识图谱上多层关联有罪视角进行药物再利用的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ea/10272215/b085056f433f/41467_2023_39301_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验