Suppr超能文献

基于在线预防自杀聊天中对话内容预测聊天结果的分类模型开发的最有效干预措施:机器学习方法。

The Most Effective Interventions for Classification Model Development to Predict Chat Outcomes Based on the Conversation Content in Online Suicide Prevention Chats: Machine Learning Approach.

机构信息

Research Department, 113 Suicide Prevention, Amsterdam, Netherlands.

Department of Stochastics, Centrum Wiskunde & Informatica, Amsterdam, Netherlands.

出版信息

JMIR Ment Health. 2024 Sep 26;11:e57362. doi: 10.2196/57362.

Abstract

BACKGROUND

For the provision of optimal care in a suicide prevention helpline, it is important to know what contributes to positive or negative effects on help seekers. Helplines can often be contacted through text-based chat services, which produce large amounts of text data for use in large-scale analysis.

OBJECTIVE

We trained a machine learning classification model to predict chat outcomes based on the content of the chat conversations in suicide helplines and identified the counsellor utterances that had the most impact on its outputs.

METHODS

From August 2021 until January 2023, help seekers (N=6903) scored themselves on factors known to be associated with suicidality (eg, hopelessness, feeling entrapped, will to live) before and after a chat conversation with the suicide prevention helpline in the Netherlands (113 Suicide Prevention). Machine learning text analysis was used to predict help seeker scores on these factors. Using 2 approaches for interpreting machine learning models, we identified text messages from helpers in a chat that contributed the most to the prediction of the model.

RESULTS

According to the machine learning model, helpers' positive affirmations and expressing involvement contributed to improved scores of the help seekers. Use of macros and ending the chat prematurely due to the help seeker being in an unsafe situation had negative effects on help seekers.

CONCLUSIONS

This study reveals insights for improving helpline chats, emphasizing the value of an evocative style with questions, positive affirmations, and practical advice. It also underscores the potential of machine learning in helpline chat analysis.

摘要

背景

为了在自杀预防热线中提供最佳护理,了解哪些因素有助于对求助者产生积极或消极影响非常重要。热线通常可以通过基于文本的聊天服务进行联系,这些服务会产生大量文本数据,可用于大规模分析。

目的

我们训练了一个机器学习分类模型,根据自杀热线中的聊天内容预测聊天结果,并确定对模型输出影响最大的咨询师话语。

方法

从 2021 年 8 月到 2023 年 1 月,求助者(N=6903)在与荷兰自杀预防热线(113 Suicide Prevention)进行聊天之前和之后,根据与自杀有关的因素(例如,绝望、感到被困、求生欲望)对自己进行评分。使用机器学习文本分析来预测求助者在这些因素上的得分。我们使用 2 种解释机器学习模型的方法,确定了聊天中有助于预测模型的帮助者的信息。

结果

根据机器学习模型,帮助者的积极肯定和表达投入有助于提高求助者的分数。由于求助者处于不安全的情况而使用宏和过早结束聊天会对求助者产生负面影响。

结论

本研究揭示了改善热线聊天的见解,强调了使用提问、积极肯定和实用建议的唤起式风格的价值。它还强调了机器学习在热线聊天分析中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/430d/11467604/7b24b2d7d080/mental_v11i1e57362_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验