Suppr超能文献

使用基于智能手机的运动捕捉系统(OpenCap)对神经系统疾病患者进行生物力学步态分析。

Biomechanical Gait Analysis Using a Smartphone-Based Motion Capture System (OpenCap) in Patients with Neurological Disorders.

作者信息

Min Yu-Sun, Jung Tae-Du, Lee Yang-Soo, Kwon Yonghan, Kim Hyung Joon, Kim Hee Chan, Lee Jung Chan, Park Eunhee

机构信息

Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.

Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea.

出版信息

Bioengineering (Basel). 2024 Sep 12;11(9):911. doi: 10.3390/bioengineering11090911.

Abstract

This study evaluates the utility of OpenCap (v0.3), a smartphone-based motion capture system, for performing gait analysis in patients with neurological disorders. We compared kinematic and kinetic gait parameters between 10 healthy controls and 10 patients with neurological conditions, including stroke, Parkinson's disease, and cerebral palsy. OpenCap captured 3D movement dynamics using two smartphones, with data processed through musculoskeletal modeling. The key findings indicate that the patient group exhibited significantly slower gait speeds (0.67 m/s vs. 1.10 m/s, = 0.002), shorter stride lengths (0.81 m vs. 1.29 m, = 0.001), and greater step length asymmetry (107.43% vs. 91.23%, = 0.023) compared to the controls. Joint kinematic analysis revealed increased variability in pelvic tilt, hip flexion, knee extension, and ankle dorsiflexion throughout the gait cycle in patients, indicating impaired motor control and compensatory strategies. These results indicate that OpenCap can effectively identify significant gait differences, which may serve as valuable biomarkers for neurological disorders, thereby enhancing its utility in clinical settings where traditional motion capture systems are impractical. OpenCap has the potential to improve access to biomechanical assessments, thereby enabling better monitoring of gait abnormalities and informing therapeutic interventions for individuals with neurological disorders.

摘要

本研究评估了基于智能手机的运动捕捉系统OpenCap(v0.3)在神经系统疾病患者步态分析中的实用性。我们比较了10名健康对照者和10名患有神经系统疾病(包括中风、帕金森病和脑瘫)的患者的运动学和动力学步态参数。OpenCap使用两部智能手机捕捉三维运动动态,并通过肌肉骨骼建模对数据进行处理。主要研究结果表明,与对照组相比,患者组的步态速度明显较慢(0.67米/秒对1.10米/秒,P = 0.002),步幅较短(0.81米对1.29米,P = 0.001),步长不对称性更大(107.43%对91.23%,P = 0.023)。关节运动学分析显示,患者在整个步态周期中骨盆倾斜、髋关节屈曲、膝关节伸展和踝关节背屈的变异性增加,表明运动控制受损和存在代偿策略。这些结果表明,OpenCap可以有效地识别显著的步态差异,这可能作为神经系统疾病的有价值生物标志物,从而提高其在传统运动捕捉系统不实用的临床环境中的实用性。OpenCap有潜力改善生物力学评估的可及性,从而更好地监测步态异常,并为神经系统疾病患者的治疗干预提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83d3/11429388/98cd82240485/bioengineering-11-00911-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验