Suppr超能文献

模式分离的信息几何公式及现有指标评估

An Information-Geometric Formulation of Pattern Separation and Evaluation of Existing Indices.

作者信息

Wang Harvey, Singh Selena, Trappenberg Thomas, Nunes Abraham

机构信息

Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada.

Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON L8S 4L8, Canada.

出版信息

Entropy (Basel). 2024 Aug 29;26(9):737. doi: 10.3390/e26090737.

Abstract

Pattern separation is a computational process by which dissimilar neural patterns are generated from similar input patterns. We present an information-geometric formulation of pattern separation, where a pattern separator is modeled as a family of statistical distributions on a manifold. Such a manifold maps an input (i.e., coordinates) to a probability distribution that generates firing patterns. Pattern separation occurs when small coordinate changes result in large distances between samples from the corresponding distributions. Under this formulation, we implement a two-neuron system whose probability law forms a three-dimensional manifold with mutually orthogonal coordinates representing the neurons' marginal and correlational firing rates. We use this highly controlled system to examine the behavior of spike train similarity indices commonly used in pattern separation research. We find that all indices (except scaling factor) are sensitive to relative differences in marginal firing rates, but no index adequately captures differences in spike trains that result from altering the correlation in activity between the two neurons. That is, existing pattern separation metrics appear (A) sensitive to patterns that are encoded by different neurons but (B) insensitive to patterns that differ only in relative spike timing (e.g., synchrony between neurons in the ensemble).

摘要

模式分离是一种计算过程,通过该过程,从相似的输入模式中生成不同的神经模式。我们提出了一种模式分离的信息几何公式,其中模式分离器被建模为流形上的一族统计分布。这样的流形将输入(即坐标)映射到生成放电模式的概率分布。当小的坐标变化导致来自相应分布的样本之间的距离很大时,就会发生模式分离。在这种公式下,我们实现了一个双神经元系统,其概率定律形成一个三维流形,具有相互正交的坐标,分别代表神经元的边缘放电率和相关放电率。我们使用这个高度可控的系统来研究模式分离研究中常用的尖峰序列相似性指标的行为。我们发现所有指标(除缩放因子外)对边缘放电率的相对差异敏感,但没有一个指标能充分捕捉由于改变两个神经元之间的活动相关性而导致的尖峰序列差异。也就是说,现有的模式分离度量似乎(A)对由不同神经元编码的模式敏感,但(B)对仅在相对尖峰时间上不同的模式不敏感(例如,群体中神经元之间的同步)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验