Suppr超能文献

用于具有未知和一般网络干扰的实验的因果消息传递

Causal message-passing for experiments with unknown and general network interference.

作者信息

Shirani Sadegh, Bayati Mohsen

机构信息

Operations, Information & Technology, Graduate School of Business, Stanford University, Stanford, CA 94305.

出版信息

Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2322232121. doi: 10.1073/pnas.2322232121. Epub 2024 Sep 27.

Abstract

Randomized experiments are a powerful methodology for data-driven evaluation of decisions or interventions. Yet, their validity may be undermined by network interference. This occurs when the treatment of one unit impacts not only its outcome but also that of connected units, biasing traditional treatment effect estimations. Our study introduces a framework to accommodate complex and unknown network interference, moving beyond specialized models in the existing literature. Our framework, termed causal message-passing, is grounded in high-dimensional approximate message-passing methodology. It is tailored for multiperiod experiments and is particularly effective in settings with many units and prevalent network interference. The framework models causal effects as a dynamic process where a treated unit's impact propagates through the network via neighboring units until equilibrium is reached. This approach allows us to approximate the dynamics of potential outcomes over time, enabling the extraction of valuable information before treatment effects reach equilibrium. Utilizing causal message-passing, we introduce a practical algorithm to estimate the total treatment effect, defined as the impact observed when all units are treated compared to the scenario where no unit receives treatment. We demonstrate the effectiveness of this approach across five numerical scenarios, each characterized by a distinct interference structure.

摘要

随机实验是一种用于基于数据驱动的决策或干预评估的强大方法。然而,其有效性可能会受到网络干扰的影响。当一个单元的处理不仅影响其自身的结果,还影响与之相连的单元的结果时,就会出现这种情况,从而使传统的处理效果估计产生偏差。我们的研究引入了一个框架,以适应复杂且未知的网络干扰,超越了现有文献中的专门模型。我们的框架称为因果消息传递,它基于高维近似消息传递方法。它专为多期实验量身定制,在单元众多且网络干扰普遍的情况下特别有效。该框架将因果效应建模为一个动态过程,其中一个被处理单元的影响通过相邻单元在网络中传播,直到达到平衡。这种方法使我们能够近似潜在结果随时间的动态变化,从而在处理效果达到平衡之前提取有价值的信息。利用因果消息传递,我们引入了一种实用算法来估计总处理效果,总处理效果定义为所有单元都接受处理时观察到的影响与没有单元接受处理的情况相比。我们在五个数值场景中展示了这种方法的有效性,每个场景都具有独特的干扰结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da4/11459125/0182740c21f8/pnas.2322232121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验