Suppr超能文献

具有干扰的二分因果推断

Bipartite Causal Inference with Interference.

作者信息

Zigler Corwin M, Papadogeorgou Georgia

机构信息

Associate Professor of Statistics and Data Sciences, University of Texas at Austin and Dell Medical School, 2317 Speedway D9800 Austin Texas 78712–1823

Postdoctoral Associate, Department of Statistical Science, Duke University, 206 Old Chem Bldg, Durham, NC 27708

出版信息

Stat Sci. 2021 Feb;36(1):109-123. doi: 10.1214/19-sts749. Epub 2020 Dec 21.

Abstract

Statistical methods to evaluate the effectiveness of interventions are increasingly challenged by the inherent interconnectedness of units. Specifically, a recent flurry of methods research has addressed the problem of between observations, which arises when one observational unit's outcome depends not only on its treatment but also the treatment assigned to other units. We introduce the setting of which arises when 1) treatments are defined on observational units that are distinct from those at which outcomes are measured and 2) there is between units in the sense that outcomes for some units depend on the treatments assigned to many other units. The focus of this work is to formulate definitions and several possible causal estimands for this setting, highlighting similarities and differences with more commonly considered settings of causal inference with interference. Towards an empirical illustration, an inverse probability of treatment weighted estimator is adapted from existing literature to estimate a subset of simplified, but interesting, estimands. The estimators are deployed to evaluate how interventions to reduce air pollution from 473 power plants in the U.S. causally affect cardiovascular hospitalization among Medicare beneficiaries residing at 18,807 zip code locations.

摘要

评估干预措施有效性的统计方法正日益受到各单位内在相互关联性的挑战。具体而言,最近一系列方法研究解决了观测值之间的问题,当一个观测单位的结果不仅取决于其自身的治疗,还取决于分配给其他单位的治疗时,就会出现这种问题。我们引入了一种情况,即当1)治疗是在与测量结果的单位不同的观测单位上定义的,并且2)单位之间存在某种关联,即某些单位的结果取决于分配给许多其他单位的治疗时,就会出现这种情况。这项工作的重点是为这种情况制定定义和几个可能的因果估计量,突出与更常见的具有干扰的因果推断情况的异同。为了进行实证说明,从现有文献中改编了一种治疗加权逆概率估计量,以估计一组简化但有趣的估计量。这些估计量被用于评估美国473家发电厂减少空气污染的干预措施如何因果性地影响居住在18807个邮政编码地区的医疗保险受益人的心血管住院情况。

相似文献

1
Bipartite Causal Inference with Interference.具有干扰的二分因果推断
Stat Sci. 2021 Feb;36(1):109-123. doi: 10.1214/19-sts749. Epub 2020 Dec 21.
4
Causal Inference for a Population of Causally Connected Units.因果关联单元总体的因果推断
J Causal Inference. 2014 Mar;2(1):13-74. doi: 10.1515/jci-2013-0002.
6
On causal inference in the presence of interference.存在干扰时的因果推断。
Stat Methods Med Res. 2012 Feb;21(1):55-75. doi: 10.1177/0962280210386779. Epub 2010 Nov 10.
7
Toward Causal Inference With Interference.迈向具有干扰性的因果推断
J Am Stat Assoc. 2008 Jun;103(482):832-842. doi: 10.1198/016214508000000292.
9
Causal inference with recurrent and competing events.具有复发和竞争事件的因果推断。
Lifetime Data Anal. 2024 Jan;30(1):59-118. doi: 10.1007/s10985-023-09594-8. Epub 2023 May 12.

引用本文的文献

7
Universal Causality.普遍因果关系
Entropy (Basel). 2023 Mar 27;25(4):574. doi: 10.3390/e25040574.
10
A Mechanistic Model of Annual Sulfate Concentrations in the United States.美国年度硫酸盐浓度的机理模型。
J Am Stat Assoc. 2022;117(539):1082-1093. doi: 10.1080/01621459.2022.2027774. Epub 2022 Mar 17.

本文引用的文献

9
On causal inference in the presence of interference.存在干扰时的因果推断。
Stat Methods Med Res. 2012 Feb;21(1):55-75. doi: 10.1177/0962280210386779. Epub 2010 Nov 10.
10
Toward Causal Inference With Interference.迈向具有干扰性的因果推断
J Am Stat Assoc. 2008 Jun;103(482):832-842. doi: 10.1198/016214508000000292.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验