基于机器学习的骨肉瘤个体化生存预测模型:来自 SEER 数据库的数据。
Machine learning-based individualized survival prediction model for prognosis in osteosarcoma: Data from the SEER database.
机构信息
Department of Orthopedic, The Frist Affiliated Hospital of Dalian Medical University, Dalian, China.
Department of Orthopedic, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.
出版信息
Medicine (Baltimore). 2024 Sep 27;103(39):e39582. doi: 10.1097/MD.0000000000039582.
Patient outcomes of osteosarcoma vary because of tumor heterogeneity and treatment strategies. This study aimed to compare the performance of multiple machine learning (ML) models with the traditional Cox proportional hazards (CoxPH) model in predicting prognosis and explored the potential of ML models in clinical decision-making. From 2000 to 2018, 1243 patients with osteosarcoma were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Three ML methods were chosen for model development (DeepSurv, neural multi-task logistic regression [NMTLR]) and random survival forest [RSF]) and compared them with the traditional CoxPH model and TNM staging systems. 871 samples were used for model training, and the rest were used for model validation. The models' overall performance and predictive accuracy for 3- and 5-year survival were assessed by several metrics, including the concordance index (C-index), the Integrated Brier Score (IBS), receiver operating characteristic curves (ROC), area under the ROC curves (AUC), calibration curves, and decision curve analysis. The efficacy of personalized recommendations by ML models was evaluated by the survival curves. The performance was highest in the DeepSurv model (C-index, 0.77; IBS, 0.14; 3-year AUC, 0.80; 5-year AUC, 0.78) compared with other methods (C-index, 0.73-0.74; IBS, 0.16-0.17; 3-year AUC, 0.73-0.78; 5-year AUC, 0.72-0.78). There are also significant differences in survival outcomes between patients who align with the treatment option recommended by the DeepSurv model and those who do not (hazard ratio, 1.88; P < .05). The DeepSurv model is available in an approachable web app format at https://survivalofosteosarcoma.streamlit.app/. We developed ML models capable of accurately predicting the survival of osteosarcoma, which can provide useful information for decision-making regarding the appropriate treatment.
患者的骨肉瘤结局因肿瘤异质性和治疗策略而有所不同。本研究旨在比较多种机器学习 (ML) 模型与传统 Cox 比例风险 (CoxPH) 模型在预测预后方面的性能,并探讨 ML 模型在临床决策中的潜力。我们从 2000 年至 2018 年,从监测、流行病学和最终结果 (SEER) 数据库中收集了 1243 例骨肉瘤患者。选择了三种 ML 方法(DeepSurv、神经多任务逻辑回归 [NMTLR])和随机生存森林 [RSF]),并将它们与传统的 CoxPH 模型和 TNM 分期系统进行了比较。871 个样本用于模型训练,其余样本用于模型验证。通过多个指标评估模型对 3 年和 5 年生存率的整体性能和预测准确性,包括一致性指数 (C-index)、综合 Brier 评分 (IBS)、接受者操作特征曲线 (ROC)、ROC 曲线下面积 (AUC)、校准曲线和决策曲线分析。通过 ML 模型的生存曲线评估个性化推荐的疗效。与其他方法相比,DeepSurv 模型的性能最高(C-index 为 0.77;IBS 为 0.14;3 年 AUC 为 0.80;5 年 AUC 为 0.78)(C-index 为 0.73-0.74;IBS 为 0.16-0.17;3 年 AUC 为 0.73-0.78;5 年 AUC 为 0.72-0.78)。在与 DeepSurv 模型推荐的治疗方案一致的患者和不一致的患者之间,生存结局也存在显著差异(风险比,1.88;P<.05)。DeepSurv 模型以易于访问的网络应用程序格式提供,可在 https://survivalofosteosarcoma.streamlit.app/ 上获得。我们开发了能够准确预测骨肉瘤患者生存的 ML 模型,可为制定适当治疗决策提供有用信息。