Suppr超能文献

基于深度学习的儿童脑胶质瘤患者生存预测模型的建立与验证:SEER 数据库与中国数据的回顾性研究

Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data.

机构信息

Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China.

School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

出版信息

Comput Biol Med. 2024 Nov;182:109185. doi: 10.1016/j.compbiomed.2024.109185. Epub 2024 Sep 27.

Abstract

OBJECTIVE

Develop a time-dependent deep learning model to accurately predict the prognosis of pediatric glioma patients, which can assist clinicians in making precise treatment decisions and reducing patient risk.

STUDY DESIGN

The study involved pediatric glioma patients from the Surveillance, Epidemiology, and End Results (SEER) Registry (2000-2018) and Tangdu Hospital in China (2010-2018) within specific time frames. For training, we selected two neural network-based algorithms (DeepSurv, neural multi-task logistic regression [N-MTLR]) and one ensemble learning-based algorithm (random survival forest [RSF]). Additionally, a multivariable Cox proportional hazard (CoxPH) model was developed for comparison purposes. The SEER dataset was randomly divided into 80 % for training and 20 % for testing, while the Tangdu Hospital dataset served as an external validation cohort. Super-parameters were fine-tuned through 1000 repeated random searches and 5-fold cross-validation on the training cohort. Model performance was assessed using the concordance index (C-index), Brier score, and Integrated Brier Score (IBS). Furthermore, the accuracy of predicting survival at 1, 3, and 5 years was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and the area under the ROC curves (AUC). The generalization ability of the model was assessed using the C-index of the Tangdu Hospital data, ROC curves for 1, 3, and 5 years, and AUC values. Lastly, decision curve analysis (DCA) curves for 1, 3, and 5-year time frames are provided to assess the net benefits across different models.

RESULTS

A total of 9532 patients with pediatric glioma were included in this study, comprising 9274 patients from the SEER database and 258 patients from Tangdu Hospital in China. The average age at diagnosis was 9.4 ± 6.2 years, and the average survival time was 96 ± 66 months. Through comprehensive performance comparison, the DeepSurv model demonstrated the highest effectiveness, with a C-index of 0.881 on the training cohort. Furthermore, it exhibited excellent accuracy in predicting the 1-year, 3-year, and 5-year survival rates (AUC: 0.903-0.939). Notably, the DeepSurv model also achieved remarkable performance and accuracy on the Chinese dataset (C-index: 0.782, AUC: 0.761-0.852). Comprehensive analysis of DeepSurv, N-MTLR, and RSF revealed that tumor stage, radiotherapy, histological type, tumor size, chemotherapy, age, and surgical method are all significant factors influencing the prognosis of pediatric glioma. Finally, an online version of the pediatric glioma survival predictor based on the DeepSurv model has been established and can be accessed through https://pediatricglioma-tangdu.streamlit.app.

CONCLUSIONS

The DeepSurv model exhibits exceptional efficacy in predicting the survival of pediatric glioma patients, demonstrating strong performance in discrimination, calibration, stability, and generalization. By utilizing the online version of the pediatric glioma survival predictor, which is based on the DeepSurv model, clinicians can accurately predict patient survival and offer personalized treatment options.

摘要

目的

开发一个时变深度学习模型,以准确预测儿科脑肿瘤患者的预后,帮助临床医生做出精确的治疗决策,降低患者风险。

研究设计

本研究纳入了来自监测、流行病学和最终结果(SEER)登记处(2000-2018 年)和中国唐都医院(2010-2018 年)的儿科脑肿瘤患者,时间范围特定。在训练过程中,我们选择了两种基于神经网络的算法(DeepSurv、神经多任务逻辑回归[N-MTLR])和一种基于集成学习的算法(随机生存森林[RSF])。此外,还开发了多变量 Cox 比例风险(CoxPH)模型进行比较。SEER 数据集随机分为 80%用于训练,20%用于测试,而唐都医院数据集则作为外部验证队列。通过在训练队列上进行 1000 次重复随机搜索和 5 折交叉验证来微调超参数。使用一致性指数(C-index)、Brier 得分和综合 Brier 得分(IBS)评估模型性能。此外,通过接收者操作特征(ROC)曲线、校准曲线和 ROC 曲线下面积(AUC)评估预测 1、3 和 5 年生存的准确性。使用唐都医院数据的 C-index、1、3 和 5 年的 ROC 曲线以及 AUC 值评估模型的泛化能力。最后,提供了 1、3 和 5 年时间框架的决策曲线分析(DCA)曲线,以评估不同模型的净收益。

结果

本研究共纳入 9532 名儿科脑肿瘤患者,包括来自 SEER 数据库的 9274 名患者和来自中国唐都医院的 258 名患者。诊断时的平均年龄为 9.4±6.2 岁,平均生存时间为 96±66 个月。通过综合性能比较,DeepSurv 模型在训练队列中表现出最高的有效性,C-index 为 0.881。此外,它在预测 1 年、3 年和 5 年生存率方面表现出优异的准确性(AUC:0.903-0.939)。值得注意的是,DeepSurv 模型在中国数据集上也取得了显著的性能和准确性(C-index:0.782,AUC:0.761-0.852)。DeepSurv、N-MTLR 和 RSF 的综合分析表明,肿瘤分期、放疗、组织学类型、肿瘤大小、化疗、年龄和手术方法都是影响儿科脑肿瘤预后的重要因素。最后,建立了一个基于 DeepSurv 模型的儿科脑肿瘤生存预测器的在线版本,并可通过 https://pediatricglioma-tangdu.streamlit.app 访问。

结论

DeepSurv 模型在预测儿科脑肿瘤患者的生存方面表现出优异的疗效,在区分度、校准度、稳定性和泛化能力方面表现出色。通过使用基于 DeepSurv 模型的儿科脑肿瘤生存预测器的在线版本,临床医生可以准确预测患者的生存情况,并提供个性化的治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验