Suppr超能文献

利用心率数据预测 1 型糖尿病患者的血糖值。

Forecasting glucose values for patients with type 1 diabetes using heart rate data.

机构信息

Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Italy.

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Italy.

出版信息

Comput Methods Programs Biomed. 2024 Dec;257:108438. doi: 10.1016/j.cmpb.2024.108438. Epub 2024 Sep 25.

Abstract

BACKGROUND

Type 1 Diabetes Mellitus (T1DM) is a chronic metabolic disease affecting millions of people worldwide. T1DM requires patients to continuously monitor their blood glucose levels. Due to pancreatic dysfunctions, patients use insulin injections to correct glucose values by synthetic insulin. Continuous Glucose Monitoring (CGM) is a system which includes an algorithm allowing to measure (and in some cases to predict) glucose levels at a frequent sampling time. This enable implementing advanced devices, including automated insulin pump delivery. Nevertheless, CGM still presents some limitations, including (i) the delay (time lag) in detecting change in glucose levels compared to the traditional blood glucose measurement, and (ii) the lack of a sufficient and acceptable time to accurately predict glucose values.

METHODS

We propose a framework based on a Gated Recurrent Unit (GRU) model to forecast both short- and long-term glucose values using heart rate (HR) and interstitial glucose (IG) values. The framework acquires HR and IG data and predicts glucose values with higher precision compared to state-of-the-art models. For training and testing the proposed framework, we used the OhioT1DM Dataset, which includes physiological data such as HR and IG values collected over an 8-week observation period. Additionally, we validated our framework using two other glucose datasets to ensure its generalizability across different HR and IG sampling frequencies. The proposed framework can be used to optimize the CGM system by incorporating patient HR measurements, thereby improving the prediction of short- and long-term glucose levels and reducing risks associated with conditions like hypoglycemia.

RESULTS

Experimental tests were conducted using HR and IG data from the OhioT1DM Dataset, as well as from two additional T1DM patient datasets. We analyzed 6 patients from Ohio dataset while we validated the algorithm on 23 patients coming from two different university hospitals (6 from the University of Catanzaro medical hospital and 17 gathered from a validated study at IRCCS San Matteo Hospital in Pavia) for a total number of 29 patients. Our framework demonstrates an improvement in forecasting IG values in terms of RMSE and MAE for different choice of prediction horizons (PH). In the case of a PH of 5, 10, 20, 30, and 60 min, we reach an RMSE of 5.0, 9.38, 15.27, 20.48, and 34.16 respectively. The framework is freely available as an open-source, with an example dataset on a GitHub repository (see https://github.com/rafgia/attention_to_glycemia).

CONCLUSION

Our framework offers a promising solution for improving glucose level prediction and management in T1DM patients. By leveraging a GRU model and incorporating HR and IG values, we achieve more precise glucose level forecasting compared to state-of-the-art models. This approach not only enhances the accuracy of glucose predictions but also mitigates the risks associated with hypoglycemia.

摘要

背景

1 型糖尿病(T1DM)是一种影响全球数百万人的慢性代谢疾病。T1DM 患者需要持续监测血糖水平。由于胰腺功能障碍,患者使用胰岛素注射来通过合成胰岛素纠正葡萄糖值。连续血糖监测(CGM)是一种系统,包括一种算法,允许在频繁采样时间测量(并在某些情况下预测)血糖水平。这使得能够实现包括自动胰岛素泵输送在内的先进设备。然而,CGM 仍然存在一些局限性,包括(i)与传统血糖测量相比,检测血糖水平变化的延迟(时间滞后),以及(ii)缺乏足够和可接受的时间来准确预测血糖值。

方法

我们提出了一个基于门控循环单元(GRU)模型的框架,使用心率(HR)和间质葡萄糖(IG)值来预测短期和长期的血糖值。该框架获取 HR 和 IG 数据,并与最先进的模型相比,预测血糖值的精度更高。为了训练和测试所提出的框架,我们使用了俄亥俄州 T1DM 数据集,其中包括在 8 周观察期内收集的 HR 和 IG 等生理数据。此外,我们使用另外两个血糖数据集验证了我们的框架,以确保其在不同的 HR 和 IG 采样频率下的通用性。该框架可以通过纳入患者的 HR 测量值来优化 CGM 系统,从而改善短期和长期血糖水平的预测,并降低与低血糖等情况相关的风险。

结果

我们使用来自俄亥俄州数据集的 HR 和 IG 数据以及另外两个 T1DM 患者数据集进行了实验测试。我们分析了来自俄亥俄州数据集的 6 名患者,同时在来自两所不同大学医院的 23 名患者(6 名来自卡坦扎罗大学医疗医院,17 名来自帕维亚的 IRCCS San Matteo 医院的验证研究)上验证了该算法,共 29 名患者。我们的框架在不同预测时段(PH)的 RMSE 和 MAE 方面,在预测 IG 值方面表现出了改进。在 PH 为 5、10、20、30 和 60 分钟的情况下,我们分别达到了 5.0、9.38、15.27、20.48 和 34.16 的 RMSE。该框架可作为一个开源框架免费使用,并在 GitHub 存储库(请参见 https://github.com/rafgia/attention_to_glycemia)上提供示例数据集。

结论

我们的框架为改善 T1DM 患者的血糖水平预测和管理提供了一种有前景的解决方案。通过利用 GRU 模型并整合 HR 和 IG 值,我们实现了比最先进模型更精确的血糖水平预测。这种方法不仅提高了血糖预测的准确性,还降低了与低血糖相关的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验