Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy.
Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano, LE, 73010, Italy; Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, TO, 10129, Italy.
Biosens Bioelectron. 2025 Jan 1;267:116790. doi: 10.1016/j.bios.2024.116790. Epub 2024 Sep 21.
Continuous monitoring of cardiovascular parameters like pulse wave velocity (PWV), blood pressure wave (BPW), stiffness index (SI), reflection index (RI), mean arterial pressure (MAP), and cardio-ankle vascular index (CAVI) has significant clinical importance for the early diagnosis of cardiovascular diseases (CVDs). Standard approaches, including echocardiography, impedance cardiography, or hemodynamic monitoring, are hindered by expensive and bulky apparatus and accessibility only in specialized facilities. Moreover, noninvasive techniques like sphygmomanometry, electrocardiography, and arterial tonometry often lack accuracy due to external electrical interferences, artifacts produced by unreliable electrode contacts, misreading from placement errors, or failure in detecting transient issues and trends. Here, we report a bio-compatible, flexible, noninvasive, low-cost piezoelectric sensor for continuous and real-time cardiovascular monitoring. The sensor, utilizing a thin aluminum nitride film on a flexible Kapton substrate, is used to extract heart rate, blood pressure waves, pulse wave velocities, and cardio-ankle vascular index from four arterial pulse sites: carotid, brachial, radial, and posterior tibial arteries. This simultaneous recording, for the first time in the same experiment, allows to provide a comprehensive cardiovascular patient's health profile. In a test with a 28-year-old male subject, the sensor yielded the SI = 7.1 ± 0.2 m/s, RI = 54.4 ± 0.5 %, MAP = 86.2 ± 1.5 mmHg, CAVI = 7.8 ± 0.2, and seven PWVs from the combination of the four different arterial positions, in good agreement with the typical values reported in the literature. These findings make the proposed technology a powerful tool to facilitate personalized medical diagnosis in preventing CVDs.
连续监测心血管参数,如脉搏波速度(PWV)、血压波(BPW)、僵硬度指数(SI)、反射指数(RI)、平均动脉压(MAP)和心踝血管指数(CAVI),对于心血管疾病(CVD)的早期诊断具有重要的临床意义。标准方法,包括超声心动图、阻抗心动图或血流动力学监测,受到昂贵且庞大的仪器和仅在专门设施中才能获得的限制。此外,像血压计、心电图和动脉张力计等非侵入性技术由于外部电干扰、不可靠电极接触产生的伪影、放置错误导致的误读或检测瞬态问题和趋势的失败,往往准确性较低。在这里,我们报告了一种生物兼容、灵活、非侵入性、低成本的压电传感器,用于连续实时心血管监测。该传感器利用柔性 Kapton 基底上的薄氮化铝薄膜,从四个动脉脉搏部位:颈动脉、肱动脉、桡动脉和胫后动脉,提取心率、血压波、脉搏波速度和心踝血管指数。这种在同一实验中同时进行的记录,首次为全面的心血管患者健康状况提供了依据。在一项对 28 岁男性受试者的测试中,传感器得出的 SI=7.1±0.2 m/s,RI=54.4±0.5 %,MAP=86.2±1.5 mmHg,CAVI=7.8±0.2,以及来自四个不同动脉位置的七个 PWV,与文献中报道的典型值非常吻合。这些发现使所提出的技术成为促进 CVD 预防个性化医学诊断的有力工具。