Department of Chemistry and Chemical Biology, Cornell University, 122 Baker Laboratory, Ithaca, NY 14853, USA.
J Mol Biol. 2024 Nov 15;436(22):168799. doi: 10.1016/j.jmb.2024.168799. Epub 2024 Sep 26.
In consideration of life in extreme environments, the effects of hydrostatic pressure on proteins at the atomic level have drawn substantial interest. Large deviations of temperature and pressure from ambient conditions can shift the free energy landscape of proteins to reveal otherwise lowly populated structural states and even promote unfolding. We report the crystal structure of the heme-containing peroxidase, cytochrome c peroxidase (CcP) at 1.5 and 3.0 kbar and make comparisons to structures determined at 1.0 bar and cryo-temperatures (100 K). Pressure produces anisotropic changes in CcP, but compressibility plateaus after 1.5 kbar. CcP responds to pressure with volume declines at the periphery of the protein where B-factors are relatively high but maintains nearly intransient core structure, hydrogen bonding interactions and active site channels. Changes in active-site solvation and heme ligation reveal pressure sensitivity to protein-ligand interactions and a potential docking site for the substrate peroxide. Compression at the surface affects neither alternate side-chain conformers nor B-factors. Thus, packing in the core, which resembles a crystalline solid, limits motion and protects the active site, whereas looser packing at the surface preserves side-chain dynamics. These data demonstrate that conformational dynamics and packing densities are not fully correlated in proteins and that encapsulation of cofactors by the polypeptide can provide a precisely structured environment resistant to change across a wide range of physical conditions.
考虑到极端环境中的生命,静水压力对蛋白质原子水平的影响引起了广泛关注。温度和压力大幅偏离环境条件会改变蛋白质的自由能景观,揭示原本低 populate 的结构状态,甚至促进蛋白质展开。我们报告了血红素过氧化物酶细胞色素 c 过氧化物酶(CcP)在 1.5 和 3.0 kbar 下的晶体结构,并与在 1.0 bar 和 cryo 温度(100 K)下确定的结构进行了比较。压力会使 CcP 产生各向异性变化,但在 1.5 kbar 后压缩性达到平台。CcP 对压力的响应是蛋白质外围体积减小,B 因子相对较高,但核心结构、氢键相互作用和活性位点通道几乎保持不变。活性位点溶剂化和血红素键合的变化表明,蛋白质-配体相互作用对压力敏感,并且存在潜在的底物过氧化物对接位点。表面的压缩既不影响侧链构象的交替,也不影响 B 因子。因此,类似于晶体固体的核心包装限制了运动并保护了活性位点,而表面较松散的包装则保留了侧链动力学。这些数据表明,蛋白质中的构象动力学和包装密度不完全相关,并且多肽对辅因子的封装可以提供一个精确结构的环境,使其能够抵抗各种物理条件的变化。