Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er-Sheva, 8410501, Israel.
Faculty of Engineering, Holon Institute of Technology, Holon, 5810201, Israel.
Sci Rep. 2024 Sep 27;14(1):22149. doi: 10.1038/s41598-024-72707-2.
Digital Breast Tomosynthesis (DBT) has revolutionized more traditional breast imaging through its three-dimensional (3D) visualization capability that significantly enhances lesion discernibility, reduces tissue overlap, and improves diagnostic precision as compared to conventional two-dimensional (2D) mammography. In this study, we propose an advanced Computer-Aided Detection (CAD) system that harnesses the power of vision transformers to augment DBT's diagnostic efficiency. This scheme uses a neural network to glean attributes from the 2D slices of DBT followed by post-processing that considers features from neighboring slices to categorize the entire 3D scan. By leveraging a transfer learning technique, we trained and validated our CAD framework on a unique dataset consisting of 3,831 DBT scans and subsequently tested it on 685 scans. Of the architectures tested, the Swin Transformer outperformed the ResNet101 and vanilla Vision Transformer. It achieved an impressive AUC score of 0.934 ± 0.026 at a resolution of 384 384. Increasing the image resolution from 224 to 384 not only maintained vital image attributes but also led to a marked improvement in performance (p-value = 0.0003). The Mean Teacher algorithm, a semi-supervised method using both labeled and unlabeled DBT slices, showed no significant improvement over the supervised approach. Comprehensive analyses across different lesion types, sizes, and patient ages revealed consistent performance. The integration of attention mechanisms yielded a visual narrative of the model's decision-making process that highlighted the prioritized regions during assessments. These findings should significantly propel the methodologies employed in DBT image analysis by setting a new benchmark for breast cancer diagnostic precision.
数字乳腺断层融合成像(DBT)通过其三维(3D)可视化能力彻底改变了传统的乳腺成像,与传统的二维(2D)乳腺 X 光相比,它显著提高了病变的可识别性,减少了组织重叠,并提高了诊断的准确性。在这项研究中,我们提出了一种先进的计算机辅助检测(CAD)系统,该系统利用视觉转换器的强大功能来提高 DBT 的诊断效率。该方案使用神经网络从 DBT 的 2D 切片中提取特征,然后进行后处理,考虑来自相邻切片的特征,对整个 3D 扫描进行分类。通过使用迁移学习技术,我们在一个由 3831 个 DBT 扫描组成的独特数据集上对我们的 CAD 框架进行了训练和验证,然后在 685 个扫描上对其进行了测试。在测试的架构中,Swin Transformer 优于 ResNet101 和普通 Vision Transformer。它在 384×384 的分辨率下实现了令人印象深刻的 0.934±0.026 的 AUC 评分。将图像分辨率从 224 增加到 384,不仅保持了重要的图像属性,而且还显著提高了性能(p 值=0.0003)。Mean Teacher 算法是一种使用有标签和无标签 DBT 切片的半监督方法,与监督方法相比,没有显著提高。对不同病变类型、大小和患者年龄的综合分析显示了一致的性能。注意力机制的集成产生了模型决策过程的可视化叙述,突出了评估过程中的优先区域。这些发现将通过为乳腺癌诊断精度设定新的基准,显著推动 DBT 图像分析中使用的方法。