Suppr超能文献

深度学习在数字乳腺断层合成中用于自动乳腺癌检测的应用综述。

Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: A review.

作者信息

Bai Jun, Posner Russell, Wang Tianyu, Yang Clifford, Nabavi Sheida

机构信息

Department of Computer Science and Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT 06269, USA.

University of Connecticut School of Medicine, 263 Farmington Ave. Farmington, CT 06030, USA.

出版信息

Med Image Anal. 2021 Jul;71:102049. doi: 10.1016/j.media.2021.102049. Epub 2021 Apr 3.

Abstract

The relatively recent reintroduction of deep learning has been a revolutionary force in the interpretation of diagnostic imaging studies. However, the technology used to acquire those images is undergoing a revolution itself at the very same time. Digital breast tomosynthesis (DBT) is one such technology, which has transformed the field of breast imaging. DBT, a form of three-dimensional mammography, is rapidly replacing the traditional two-dimensional mammograms. These parallel developments in both the acquisition and interpretation of breast images present a unique case study in how modern AI systems can be designed to adapt to new imaging methods. They also present a unique opportunity for co-development of both technologies that can better improve the validity of results and patient outcomes. In this review, we explore the ways in which deep learning can be best integrated into breast cancer screening workflows using DBT. We first explain the principles behind DBT itself and why it has become the gold standard in breast screening. We then survey the foundations of deep learning methods in diagnostic imaging, and review the current state of research into AI-based DBT interpretation. Finally, we present some of the limitations of integrating AI into clinical practice and the opportunities these present in this burgeoning field.

摘要

深度学习在相对较近的时间重新引入,已成为诊断成像研究解读中的一股变革力量。然而,用于获取这些图像的技术本身也正在经历一场变革。数字乳腺断层合成(DBT)就是这样一种技术,它已经改变了乳腺成像领域。DBT作为三维乳腺摄影的一种形式,正在迅速取代传统的二维乳腺X线照片。乳腺图像采集和解读方面的这些并行发展,为现代人工智能系统如何设计以适应新的成像方法提供了一个独特的案例研究。它们还为共同开发这两种技术提供了独特的机会,从而能够更好地提高结果的有效性和患者的治疗效果。在本综述中,我们探讨了如何利用DBT将深度学习最佳地整合到乳腺癌筛查工作流程中。我们首先解释DBT本身的原理以及它为何成为乳腺筛查的金标准。然后,我们概述诊断成像中深度学习方法的基础,并回顾基于人工智能的DBT解读的研究现状。最后,我们阐述了将人工智能整合到临床实践中的一些局限性以及这些局限性在这个新兴领域所带来的机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验