Suppr超能文献

识别麦芽大麦籽粒的缺陷和品种。

Identifying defects and varieties of Malting Barley Kernels.

作者信息

Kozłowski Michał, Szczypiński Piotr M, Reiner Jacek, Lampa Piotr, Mrzygłód Mariusz, Szturo Karolina, Zapotoczny Piotr

机构信息

University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 11, Olsztyn, 10-710, Poland.

Lodz University of Technology, al. Politechniki 10, Lodz, 93-590, Poland.

出版信息

Sci Rep. 2024 Sep 27;14(1):22143. doi: 10.1038/s41598-024-73683-3.

Abstract

This study introduces a comprehensive approach for classifying individual malting barley kernels, involving dual-sided kernel imaging, a specifically designed image processing algorithm, an optimized deep neural network architecture, and a mechanical sorting system. The proposed method achieves precise classification into multiple classes, aligning with quality standards for malting material assessment. Throughout the study, various image analysis techniques were assessed, including traditional feature engineering, established transfer learning deep neural network architectures, and our custom-designed convolutional neural network tailored for barley kernel image analysis. Comparative analysis underscores the superior performance of our network model. The study reveals that our proposed deep learning network achieves a 94% accuracy in classifying barley kernel defects and varieties, outperforming well-established transfer learning models to complex architectures that attain 93% accuracy. Additionally, it surpasses the traditional machine learning approach involving feature extraction and support vector machine classifiers, which achieve accuracy below 90% in detecting defective kernels and below 70% in varietal classification. However, we also noted the traditional approach's advantage in morphological feature recognition. This observation guides new research toward integrating morphological feature extraction techniques with modern convolutional networks. This paper presents a deep neural network designed specifically for the analysis of cereal kernel images in two applications: defect and variety classification. It emphasizes the importance of standardizing kernel orientation and merging images from both sides of the kernel, and introduces a device for image acquisition that fulfills this need.

摘要

本研究介绍了一种用于对单个制麦芽大麦籽粒进行分类的综合方法,该方法包括双面籽粒成像、专门设计的图像处理算法、优化的深度神经网络架构以及机械分拣系统。所提出的方法能够实现精确分类为多个类别,符合制麦芽材料评估的质量标准。在整个研究过程中,评估了各种图像分析技术,包括传统特征工程、已有的迁移学习深度神经网络架构,以及我们为大麦籽粒图像分析量身定制的卷积神经网络。对比分析突出了我们网络模型的卓越性能。研究表明,我们提出的深度学习网络在对大麦籽粒缺陷和品种进行分类时达到了94%的准确率,优于成熟的迁移学习模型以及准确率为93%的复杂架构。此外,它还超过了涉及特征提取和支持向量机分类器的传统机器学习方法,后者在检测有缺陷籽粒时的准确率低于90%,在品种分类时的准确率低于70%。然而,我们也注意到传统方法在形态特征识别方面的优势。这一观察结果为将形态特征提取技术与现代卷积网络相结合的新研究提供了指导。本文提出了一种专门为谷物籽粒图像分析设计的深度神经网络,用于两种应用:缺陷和品种分类。它强调了标准化籽粒方向和合并籽粒两侧图像的重要性,并介绍了一种满足这一需求的图像采集设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f288/11436987/19a0a288a4ab/41598_2024_73683_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验