Suppr超能文献

基于多路径卷积神经网络算法的深度学习架构优化

Optimization of deep learning architecture based on multi-path convolutional neural network algorithm.

作者信息

Zhou Chuan, Liu Yan, An Xinghan, Xu Xiyao, Wang Hao

机构信息

School of Microelectronics, Tianjin University, Tianjin, 300100, China.

China United Network Communication Group Co., Ltd, BeiJing, 100000, China.

出版信息

Sci Rep. 2025 Jun 4;15(1):19532. doi: 10.1038/s41598-025-03765-3.

Abstract

Current multi-stream convolutional neural network (MSCNN) exhibits notable limitations in path cooperation, feature fusion, and resource utilization when handling complex tasks. To enhance MSCNN's feature extraction ability, computational efficiency, and model robustness, this study conducts an in-depth investigation of these architectural deficiencies and proposes corresponding improvements. At present, there are some problems in multi-path architecture, such as isolated information among paths, low efficiency of feature fusion mechanism, and high computational complexity. These issues lead to insufficient performance of the model in robustness indicators such as noise resistance, occlusion sensitivity, and resistance to sample attacks. The architecture also faces challenges in data scalability efficiency and resource scalability requirements. Therefore, this study proposes an optimized model based on a dynamic path cooperation mechanism and lightweight design, innovatively introducing a path attention mechanism and feature-sharing module to enhance information interaction between paths. Self-attention fusion method is adopted to improve the efficiency of feature fusion. At the same time, by combining path selection and model pruning technology, the effective balance between model performance and computational resources demand is realized. The study employs three datasets, Canadian Institute for Advanced Research-10 (CIFAR-10), ImageNet, and Custom Dataset for performance comparison and simulation. The results show that the proposed optimized model is superior to the current mainstream model in many indicators. For example, on the Medical Images dataset, the optimized model's noise robustness, occlusion sensitivity, and sample attack resistance are 0.931, 0.950, and 0.709, respectively. On E-commerce Data, the optimized model's data scalability efficiency reaches 0.969, and the resource scalability requirement is only 0.735, showing excellent task adaptability and resource utilization efficiency. Therefore, the study provides a critical reference for the optimization and practical application of MSCNN, contributing to the application research of deep learning in complex tasks.

摘要

当前的多流卷积神经网络(MSCNN)在处理复杂任务时,在路径协作、特征融合和资源利用方面存在显著局限性。为了提高MSCNN的特征提取能力、计算效率和模型鲁棒性,本研究对这些架构缺陷进行了深入研究,并提出了相应的改进措施。目前,多路径架构存在一些问题,如路径间信息孤立、特征融合机制效率低下以及计算复杂度高。这些问题导致模型在抗噪声、遮挡敏感度和抗样本攻击等鲁棒性指标方面性能不足。该架构在数据可扩展性效率和资源可扩展性要求方面也面临挑战。因此,本研究提出了一种基于动态路径协作机制和轻量化设计的优化模型,创新性地引入了路径注意力机制和特征共享模块,以增强路径间的信息交互。采用自注意力融合方法提高特征融合效率。同时,通过结合路径选择和模型剪枝技术,实现了模型性能与计算资源需求之间的有效平衡。该研究使用了加拿大高级研究院-10(CIFAR-10)、ImageNet和自定义数据集这三个数据集进行性能比较和模拟。结果表明,所提出的优化模型在许多指标上优于当前的主流模型。例如,在医学图像数据集上,优化模型的抗噪声能力、遮挡敏感度和抗样本攻击能力分别为0.931、0.950和0.709。在电子商务数据上,优化模型的数据可扩展性效率达到0.969,资源可扩展性要求仅为0.735,显示出优异的任务适应性和资源利用效率。因此,该研究为MSCNN的优化和实际应用提供了关键参考,有助于深度学习在复杂任务中的应用研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54da/12137709/9470426e40e9/41598_2025_3765_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验