Suppr超能文献

采用集成机器学习生存框架,鉴定由 PLA2G7 阳性巨噬细胞驱动的特发性肺纤维化患者的免疫模式。

Identification of immune patterns in idiopathic pulmonary fibrosis patients driven by PLA2G7-positive macrophages using an integrated machine learning survival framework.

机构信息

School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.

Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China.

出版信息

Sci Rep. 2024 Sep 27;14(1):22369. doi: 10.1038/s41598-024-73625-z.

Abstract

Patients with advanced idiopathic pulmonary fibrosis (IPF), a complex and incurable lung disease with an elusive pathology, are nearly exclusive candidates for lung transplantation. Improved identification of patient subtypes can enhance early diagnosis and intervention, ultimately leading to better prognostic outcomes for patients. The goal of this study is to identify new immune patterns and biomarkers in patients. Immune subtypes in IPF patients were identified using single-sample gene set enrichment analysis, and immune subtype-related genes were explored using the weighted correlation network analysis algorithm. A machine learning integration framework was used to establish the optimal prognostic model, known as the immune-related risk score (IRS). Single-cell sequencing was conducted to investigate the major role of macrophage-derived PLA2G7 in the immune microenvironment. We assessed the stability of celecoxib in targeting PLA2G7 through molecular docking and surface plasmon resonance. IPF patients present two distinct immune subtypes, one characterized by immune activation and inflammation, and the other by immune suppression. IRS can predict the immune status and prognosis of IPF patients. Furthermore, multi-cohort analysis and single-cell sequencing analysis demonstrated the diagnostic and prognostic value of PLA2G7 derived from macrophages and its role in shaping the inflammatory immune microenvironment in IPF patients. Celecoxib could effectively and stably bind with PLA2G7. PLA2G7, as identified through IRS, demonstrates marked stability in diagnosing and predicting the prognosis of IPF patients as well as predicting their immune status. It can serve as a novel biomarker for IPF patients.

摘要

特发性肺纤维化(IPF)是一种复杂且无法治愈的肺部疾病,其病理机制尚不清楚。晚期 IPF 患者几乎是肺移植的唯一候选人群。提高对患者亚型的识别能力可以促进早期诊断和干预,从而为患者带来更好的预后结果。本研究旨在确定患者中的新免疫模式和生物标志物。使用单样本基因集富集分析(ssGSEA)鉴定 IPF 患者的免疫亚型,并使用加权相关网络分析算法(WGCNA)探索免疫亚型相关基因。采用机器学习集成框架构建最优预后模型,即免疫相关风险评分(IRS)。通过单细胞测序研究巨噬细胞衍生 PLA2G7 在免疫微环境中的主要作用。我们通过分子对接和表面等离子体共振评估了塞来昔布靶向 PLA2G7 的稳定性。IPF 患者存在两种截然不同的免疫亚型,一种以免疫激活和炎症为特征,另一种以免疫抑制为特征。IRS 可预测 IPF 患者的免疫状态和预后。此外,多队列分析和单细胞测序分析证实了巨噬细胞衍生 PLA2G7 的诊断和预后价值及其在塑造 IPF 患者炎症免疫微环境中的作用。塞来昔布可与 PLA2G7 有效且稳定结合。通过 IRS 鉴定的 PLA2G7 对诊断和预测 IPF 患者的预后以及预测其免疫状态具有显著的稳定性。它可以作为 IPF 患者的一种新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28ba/11437001/9c512d725f59/41598_2024_73625_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验