Suppr超能文献

将细胞实验、单细胞测序和机器学习相结合,以鉴定特发性肺纤维化中的内质网应激生物标志物。

Integrating cellular experiments, single-cell sequencing, and machine learning to identify endoplasmic reticulum stress biomarkers in idiopathic pulmonary fibrosis.

机构信息

Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Ann Med. 2024 Dec;56(1):2409352. doi: 10.1080/07853890.2024.2409352. Epub 2024 Sep 28.

Abstract

BACKGROUND

Idiopathic Pulmonary Fibrosis (IPF) presents a severe respiratory challenge with a poor prognosis due to the lack of reliable biomarkers. Recent evidence suggests that Endoplasmic Reticulum Stress (ERS) may be associated with IPF pathogenesis. This study focuses on uncovering ERS-associated biomarkers for IPF.

METHODS

Sequencing data from diverse datasets were analyzed, utilizing differential gene expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA). Endoplasmic Reticulum Stress (ERS)-related genes were extracted from the GeneCards database. Hub genes were identified through Protein-Protein Interaction (PPI) analysis. Diagnostic and prognostic models were developed using machine learning algorithms and validated across both training and validation sets. Additionally, techniques such as Cell-type Identification by Estimating Relative Subsets of RNA Transcripts and single-cell RNA sequencing were employed to identify potential IPF-related cells. These findings were further investigated to elucidate their underlying mechanisms through experiments.

RESULTS

Differentially expressed genes, WGCNA-identified blue module genes, and ERS-related genes extracted from the GeneCards database were intersected, and the resulting genes were used to construct diagnostic and prognostic models. Validation using multiple datasets indicated that both the diagnostic and prognostic models possess strong predictive capabilities. PPI analysis highlighted SPP1 as a potential hub gene in IPF. Moreover, M2 macrophages were found in higher quantities in the lung tissue of IPF patients, with a significant increase in SPP1-expressing M2 macrophages compared to the control group. experiments demonstrated that exogenous SPP1 inhibited the proliferation and migration of M2 macrophages and promoted apoptosis within a certain concentration range.

CONCLUSION

This study identifies ERS-related biomarkers in IPF, highlighting SPP1 and M2 macrophages. The resulting diagnostic and prognostic models offer strong predictive capabilities, unveiling new therapeutic avenues.

摘要

背景

特发性肺纤维化(IPF)是一种严重的呼吸系统疾病,由于缺乏可靠的生物标志物,预后较差。最近的证据表明,内质网应激(ERS)可能与 IPF 的发病机制有关。本研究旨在揭示与特发性肺纤维化相关的 ERS 生物标志物。

方法

对来自不同数据集的测序数据进行分析,利用差异基因表达分析和加权基因共表达网络分析(WGCNA)。从 GeneCards 数据库中提取内质网应激(ERS)相关基因。通过蛋白质-蛋白质相互作用(PPI)分析鉴定枢纽基因。使用机器学习算法开发诊断和预后模型,并在训练集和验证集上进行验证。此外,还采用细胞类型鉴定技术(通过估计相对 RNA 转录物的子集)和单细胞 RNA 测序技术来鉴定潜在的 IPF 相关细胞。通过实验进一步研究这些发现,以阐明其潜在机制。

结果

差异表达基因、WGCNA 鉴定的蓝色模块基因和从 GeneCards 数据库中提取的 ERS 相关基因进行了交集,得到的基因被用于构建诊断和预后模型。使用多个数据集进行验证表明,诊断和预后模型均具有较强的预测能力。PPI 分析突出 SPP1 是 IPF 中的一个潜在枢纽基因。此外,在 IPF 患者的肺组织中发现了更多的 M2 巨噬细胞,与对照组相比,表达 SPP1 的 M2 巨噬细胞显著增加。实验表明,外源性 SPP1 在一定浓度范围内抑制 M2 巨噬细胞的增殖和迁移,并促进其凋亡。

结论

本研究鉴定了特发性肺纤维化中的 ERS 相关生物标志物,突出了 SPP1 和 M2 巨噬细胞。由此产生的诊断和预后模型具有较强的预测能力,为新的治疗途径提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d4/11441044/d6ec8bceedc5/IANN_A_2409352_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验