Suppr超能文献

将机器学习与生物信息学相结合以预测特发性肺纤维化的预后:开发一种个性化临床预测工具。

Integrating machine learning with bioinformatics for predicting idiopathic pulmonary fibrosis prognosis: developing an individualized clinical prediction tool.

作者信息

Ruan Hongmei, Ren Chunnian

机构信息

Department of Pediatric Neurology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

Department of Pediatric Surgery, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Exp Biol Med (Maywood). 2024 Dec 23;249:10215. doi: 10.3389/ebm.2024.10215. eCollection 2024.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a poor prognosis. Its non-specific clinical symptoms make accurate prediction of disease progression challenging. This study aimed to develop molecular-level prognostic models to personalize treatment strategies for IPF patients. Using transcriptome sequencing and clinical data from 176 IPF patients, we developed a Random Survival Forest (RSF) model through machine learning and bioinformatics techniques. The model demonstrated superior predictive accuracy and clinical utility, as shown by the concordance index (C-index), the area under the operating characteristic curve (AUC), Brief scores, and decision curve analysis (DCA) curves. Additionally, a novel prognostic staging system was introduced to stratify IPF patients into distinct risk groups, enabling individualized predictions. The model's performance was validated using a bleomycin-induced pulmonary fibrosis mouse model. In conclusion, this study offers a new prognostic staging system and predictive tool for IPF, providing valuable insights for treatment and management.

摘要

特发性肺纤维化(IPF)是一种预后较差的慢性间质性肺疾病。其非特异性临床症状使得准确预测疾病进展具有挑战性。本研究旨在开发分子水平的预后模型,以实现IPF患者治疗策略的个性化。利用176例IPF患者的转录组测序和临床数据,我们通过机器学习和生物信息学技术开发了一种随机生存森林(RSF)模型。该模型显示出卓越的预测准确性和临床实用性,一致性指数(C指数)、操作特征曲线下面积(AUC)、Brief评分和决策曲线分析(DCA)曲线均证明了这一点。此外,引入了一种新的预后分期系统,将IPF患者分层为不同的风险组,从而实现个性化预测。使用博来霉素诱导的肺纤维化小鼠模型对该模型的性能进行了验证。总之,本研究为IPF提供了一种新的预后分期系统和预测工具,为治疗和管理提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d911/11702306/07530ff87e80/ebm-249-10215-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验