Department of Interdisciplinary Program in Bioengineering, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Sci Rep. 2024 Sep 27;14(1):22228. doi: 10.1038/s41598-024-72484-y.
Despite the increasing use of lung ultrasound (LUS) in the evaluation of respiratory disease, operators' competence constrains its effectiveness. We developed a deep-learning (DL) model for multi-label classification using LUS and validated its performance and efficacy on inter-reader variability. We retrospectively collected LUS and labeled as normal, B-line, consolidation, and effusion from patients undergoing thoracentesis at a tertiary institution between January 2018 and January 2022. The development and internal testing involved 7580 images from January 2018 and December 2020, and the model's performance was validated on a temporally separated test set (n = 985 images collected after January 2021) and two external test sets (n = 319 and 54 images). Two radiologists interpreted LUS with and without DL assistance and compared diagnostic performance and agreement. The model demonstrated robust performance with AUCs: 0.93 (95% CI 0.92-0.94) for normal, 0.87 (95% CI 0.84-0.89) for B-line, 0.82 (95% CI 0.78-0.86) for consolidation, and 0.94 (95% CI 0.93-0.95) for effusion. The model improved reader accuracy for binary discrimination (normal vs. abnormal; reader 1: 87.5-95.6%, p = 0.004; reader 2: 95.0-97.5%, p = 0.19), and agreement (k = 0.73-0.83, p = 0.01). In conclusion, the DL-based model may assist interpretation, improving accuracy and overcoming operator competence limitations in LUS.
尽管肺超声(LUS)在评估呼吸系统疾病中的应用越来越广泛,但操作人员的能力仍然限制了其效果。我们开发了一种基于深度学习(DL)的多标签分类模型,用于评估 LUS,并验证其在读者间变异性方面的性能和效果。我们回顾性地收集了 2018 年 1 月至 2022 年 1 月在一家三级医疗机构接受胸腔穿刺术的患者的 LUS,并将其标记为正常、B 线、实变和胸腔积液。该模型的开发和内部测试涉及 2018 年 1 月至 2020 年 12 月的 7580 张图像,在时间上分开的测试集(2021 年 1 月后收集的 985 张图像)和两个外部测试集(319 张和 54 张图像)上验证了该模型的性能。两名放射科医生在有和没有深度学习辅助的情况下解释 LUS,并比较了诊断性能和一致性。该模型表现出稳健的性能,其 AUC 分别为:正常 0.93(95%置信区间 0.92-0.94),B 线 0.87(95%置信区间 0.84-0.89),实变 0.82(95%置信区间 0.78-0.86),胸腔积液 0.94(95%置信区间 0.93-0.95)。该模型提高了读者对二元判别(正常与异常)的准确性(读者 1:87.5-95.6%,p=0.004;读者 2:95.0-97.5%,p=0.19)和一致性(κ=0.73-0.83,p=0.01)。总之,基于深度学习的模型可以辅助解释,提高准确性,并克服 LUS 操作人员能力的限制。