Suppr超能文献

增强光伏参数估计:非线性寻优与强化学习策略与金豺优化器的集成

Enhancing photovoltaic parameter estimation: integration of non-linear hunting and reinforcement learning strategies with golden jackal optimizer.

作者信息

Sundar Ganesh Chappani Sankaran, Kumar Chandrasekaran, Premkumar Manoharan, Derebew Bizuwork

机构信息

Department of Electrical and Electronics Engineering, Karpagam College of Engineering, Coimbatore, Tamil Nadu, 641032, India.

Department of Electrical and Electronics Engineering, Dayananda Sagar College of Engineering, Bengaluru, Karnataka, 560078, India.

出版信息

Sci Rep. 2024 Feb 2;14(1):2756. doi: 10.1038/s41598-024-52670-8.

Abstract

The advancement of Photovoltaic (PV) systems hinges on the precise optimization of their parameters. Among the numerous optimization techniques, the effectiveness of each often rests on their inherent parameters. This research introduces a new methodology, the Reinforcement Learning-based Golden Jackal Optimizer (RL-GJO). This approach uniquely combines reinforcement learning with the Golden Jackal Optimizer to enhance its efficiency and adaptability in handling various optimization problems. Furthermore, the research incorporates an advanced non-linear hunting strategy to optimize the algorithm's performance. The proposed algorithm is first validated using 29 CEC2017 benchmark test functions and five engineering-constrained design problems. Secondly, rigorous testing on PV parameter estimation benchmark datasets, including the single-diode model, double-diode model, three-diode model, and a representative PV module, was carried out to highlight the superiority of RL-GJO. The results were compelling: the root mean square error values achieved by RL-GJO were markedly lower than those of the original algorithm and other prevalent optimization methods. The synergy between reinforcement learning and GJO in this approach facilitates faster convergence and improved solution quality. This integration not only improves the performance metrics but also ensures a more efficient optimization process, especially in complex PV scenarios. With an average Freidman's rank test values of 1.564 for numerical and engineering design problems and 1.742 for parameter estimation problems, the proposed RL-GJO is performing better than the original GJO and other peers. The proposed RL-GJO stands out as a reliable tool for PV parameter estimation. By seamlessly combining reinforcement learning with the golden jackal optimizer, it sets a new benchmark in PV optimization, indicating a promising avenue for future research and applications.

摘要

光伏(PV)系统的发展取决于其参数的精确优化。在众多优化技术中,每种技术的有效性通常取决于其固有参数。本研究引入了一种新方法,即基于强化学习的金豺优化器(RL-GJO)。这种方法独特地将强化学习与金豺优化器相结合,以提高其在处理各种优化问题时的效率和适应性。此外,该研究还纳入了一种先进的非线性狩猎策略来优化算法性能。所提出的算法首先使用29个CEC2017基准测试函数和五个工程约束设计问题进行了验证。其次,对包括单二极管模型、双二极管模型、三二极管模型和一个代表性光伏模块在内的光伏参数估计基准数据集进行了严格测试,以突出RL-GJO的优越性。结果令人信服:RL-GJO实现的均方根误差值明显低于原始算法和其他流行的优化方法。这种方法中强化学习与金豺优化器之间的协同作用促进了更快的收敛和更好的解质量。这种整合不仅提高了性能指标,还确保了更高效的优化过程,尤其是在复杂的光伏场景中。对于数值和工程设计问题,所提出的RL-GJO的平均弗里德曼秩检验值为1.564,对于参数估计问题为1.742,其表现优于原始金豺优化器和其他同类方法。所提出的RL-GJO作为一种可靠的光伏参数估计工具脱颖而出。通过将强化学习与金豺优化器无缝结合,它在光伏优化方面树立了新的标杆,为未来的研究和应用指明了一条充满希望的道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f6e/10837193/6874c3c1f1a9/41598_2024_52670_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验