Suppr超能文献

CGJO:一种新型复值编码金豺优化算法

CGJO: a novel complex-valued encoding golden jackal optimization.

作者信息

Zhang Jinzhong, Zhang Gang, Kong Min, Zhang Tan, Wang Duansong

机构信息

School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an, 237012, China.

出版信息

Sci Rep. 2024 Aug 23;14(1):19577. doi: 10.1038/s41598-024-70572-7.

Abstract

Golden jackal optimization (GJO) is inspired by mundane characteristics and collaborative hunting behaviour, which mimics foraging, trespassing and encompassing, and capturing prey to refresh a jackal's position. However, the GJO has several limitations, such as a slow convergence rate, low computational accuracy, premature convergence, poor solution efficiency, and weak exploration and exploitation. To enhance the global detection ability and solution accuracy, this paper proposes a novel complex-valued encoding golden jackal optimization (CGJO) to achieve function optimization and engineering design. The complex-valued encoding strategy deploys a dual-diploid organization to encode the real and imaginary portions of the golden jackal and converts the dual-dimensional encoding region to the single-dimensional manifestation region, which increases population diversity, restricts search stagnation, expands the exploration area, promotes information exchange, fosters collaboration efficiency and improves convergence accuracy. CGJO not only exhibits strong adaptability and robustness to achieve supplementary advantages and enhance optimization efficiency but also balances global exploration and local exploitation to promote computational precision and determine the best solution. The CEC 2022 test suite and six real-world engineering designs are utilized to evaluate the effectiveness and feasibility of CGJO. CGJO is compared with three categories of existing optimization algorithms: (1) WO, HO, NRBO and BKA are recently published algorithms; (2) SCSO, GJO, RGJO and SGJO are highly cited algorithms; and (3) L-SHADE, LSHADE-EpsSin and CMA-ES are highly performing algorithms. The experimental results reveal that the effectiveness and feasibility of CGJO are superior to those of other algorithms. The CGJO has strong superiority and reliability to achieve a quicker convergence rate, greater computation precision, and greater stability and robustness.

摘要

金豺优化算法(GJO)的灵感来源于金豺的日常特性和协作狩猎行为,它模拟觅食、侵入、包围以及捕获猎物的过程来更新金豺的位置。然而,GJO存在一些局限性,比如收敛速度慢、计算精度低、早熟收敛、求解效率差以及勘探和开发能力弱等问题。为了提高全局检测能力和求解精度,本文提出了一种新颖的复值编码金豺优化算法(CGJO),用于实现函数优化和工程设计。复值编码策略采用双二倍体结构对金豺的实部和虚部进行编码,并将二维编码区域转换为一维表现区域,这增加了种群多样性,限制了搜索停滞,扩大了勘探区域,促进了信息交流,提高了协作效率并提升了收敛精度。CGJO不仅展现出强大的适应性和鲁棒性,以实现补充优势并提高优化效率,还平衡了全局勘探和局部开发,以提升计算精度并确定最优解。利用CEC 2022测试套件和六个实际工程设计来评估CGJO的有效性和可行性。将CGJO与三类现有的优化算法进行比较:(1)WO、HO、NRBO和BKA是最近发表的算法;(2)SCSO、GJO、RGJO和SGJO是被高度引用的算法;(3)L-SHADE、LSHADE-EpsSin和CMA-ES是性能优异的算法。实验结果表明,CGJO的有效性和可行性优于其他算法。CGJO具有很强的优越性和可靠性,能够实现更快的收敛速度、更高的计算精度以及更高的稳定性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9c8/11343840/5d3ba5b22dff/41598_2024_70572_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验