Suppr超能文献

自动识别头影测量标志点:

Automated identification of cephalometric landmarks:

出版信息

Angle Orthod. 2020 Jan;90(1):69-76. doi: 10.2319/022019-129.1. Epub 2019 Jul 22.

Abstract

OBJECTIVES

To compare detection patterns of 80 cephalometric landmarks identified by an automated identification system (AI) based on a recently proposed deep-learning method, the You-Only-Look-Once version 3 (YOLOv3), with those identified by human examiners.

MATERIALS AND METHODS

The YOLOv3 algorithm was implemented with custom modifications and trained on 1028 cephalograms. A total of 80 landmarks comprising two vertical reference points and 46 hard tissue and 32 soft tissue landmarks were identified. On the 283 test images, the same 80 landmarks were identified by AI and human examiners twice. Statistical analyses were conducted to detect whether any significant differences between AI and human examiners existed. Influence of image factors on those differences was also investigated.

RESULTS

Upon repeated trials, AI always detected identical positions on each landmark, while the human intraexaminer variability of repeated manual detections demonstrated a detection error of 0.97 ± 1.03 mm. The mean detection error between AI and human was 1.46 ± 2.97 mm. The mean difference between human examiners was 1.50 ± 1.48 mm. In general, comparisons in the detection errors between AI and human examiners were less than 0.9 mm, which did not seem to be clinically significant.

CONCLUSIONS

AI showed as accurate an identification of cephalometric landmarks as did human examiners. AI might be a viable option for repeatedly identifying multiple cephalometric landmarks.

摘要

目的

比较基于最近提出的深度学习方法(即 You-Only-Look-Once 版本 3(YOLOv3)的自动识别系统(AI)识别的 80 个头影测量标志与人工检查者识别的标志的检测模式。

材料与方法

对 YOLOv3 算法进行了定制修改,并在 1028 张头颅侧位片上进行了训练。共识别了 80 个标志点,包括两个垂直参考点和 46 个硬组织标志点和 32 个软组织标志点。在 283 张测试图像上,AI 和人工检查者分别对同一 80 个标志点进行了两次识别。进行了统计分析以检测 AI 和人工检查者之间是否存在任何显著差异。还研究了图像因素对这些差异的影响。

结果

在重复试验中,AI 始终在每个标志点上检测到相同的位置,而人工重复手动检测的内部检查者变异性显示检测误差为 0.97±1.03mm。AI 与人工之间的平均检测误差为 1.46±2.97mm。人工检查者之间的平均差异为 1.50±1.48mm。通常,AI 和人工检查者之间的检测误差比较小于 0.9mm,这似乎没有临床意义。

结论

AI 对头影测量标志的识别与人工检查者一样准确。AI 可能是重复识别多个头影测量标志的可行选择。

相似文献

1
Automated identification of cephalometric landmarks:自动识别头影测量标志点:
Angle Orthod. 2020 Jan;90(1):69-76. doi: 10.2319/022019-129.1. Epub 2019 Jul 22.
2
Automated identification of cephalometric landmarks: .自动识别头影测量标志点:.
Angle Orthod. 2019 Nov;89(6):903-909. doi: 10.2319/022019-127.1. Epub 2019 Jul 8.
5
Web-based fully automated cephalometric analysis by deep learning.基于深度学习的网络全自动头影测量分析
Comput Methods Programs Biomed. 2020 Oct;194:105513. doi: 10.1016/j.cmpb.2020.105513. Epub 2020 May 6.

引用本文的文献

8
Accuracy of automated analysis in cephalometry.头影测量中自动分析的准确性。
J Dent Sci. 2025 Apr;20(2):830-843. doi: 10.1016/j.jds.2024.09.012. Epub 2024 Oct 8.

本文引用的文献

1
Automated identification of cephalometric landmarks: .自动识别头影测量标志点:.
Angle Orthod. 2019 Nov;89(6):903-909. doi: 10.2319/022019-127.1. Epub 2019 Jul 8.
2
Predicting soft tissue changes after orthognathic surgery: .预测正颌手术后软组织的变化: 。
Angle Orthod. 2019 Nov;89(6):910-916. doi: 10.2319/120518-851.1. Epub 2019 May 31.
3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验