Suppr超能文献

DRpred:一种新型的深度学习预测器,通过纳入贝叶斯推断的先验标签关系,用于多标签 mRNA 亚细胞定位预测。

DRpred: A Novel Deep Learning-Based Predictor for Multi-Label mRNA Subcellular Localization Prediction by Incorporating Bayesian Inferred Prior Label Relationships.

机构信息

School of Computer Science and Technology, Zhengzhou University of Light Industry, Zhengzhou 450000, China.

Henan Provincial Key Laboratory of Data Intelligence for Food Safety, Zhengzhou University of Light Industry, Zhengzhou 450000, China.

出版信息

Biomolecules. 2024 Aug 26;14(9):1067. doi: 10.3390/biom14091067.

Abstract

The subcellular localization of messenger RNA (mRNA) not only helps us to understand the localization regulation of gene expression but also helps to understand the relationship between RNA localization pattern and human disease mechanism, which has profound biological and medical significance. Several predictors have been proposed for predicting the subcellular localization of mRNA. However, there is still considerable room for improvement in their predictive performance, especially regarding multi-label prediction. This study proposes a novel multi-label predictor, DRpred, for mRNA subcellular localization prediction. This predictor first utilizes Bayesian networks to capture the dependencies among labels. Subsequently, it combines these dependencies with features extracted from mRNA sequences using Word2vec, forming the input for the predictor. Finally, it employs a neural network combining BiLSTM and an attention mechanism to capture the internal relationships of the input features for mRNA subcellular localization. The experimental validation on an independent test set demonstrated that DRpred obtained a competitive predictive performance in multi-label prediction and outperformed state-of-the-art predictors in predicting single subcellular localizations, obtaining accuracies of 82.14%, 93.02%, 80.37%, 94.00%, 90.58%, 84.53%, 82.01%, 79.71%, and 85.67% for the chromatin, cytoplasm, cytosol, exosome, membrane, nucleolus, nucleoplasm, nucleus, and ribosome, respectively. It is anticipated to offer profound insights for biological and medical research.

摘要

信使 RNA(mRNA)的亚细胞定位不仅有助于我们理解基因表达的定位调控,还有助于理解 RNA 定位模式与人类疾病机制之间的关系,这具有深远的生物学和医学意义。已经提出了几种预测器来预测 mRNA 的亚细胞定位。然而,它们在预测性能方面仍有很大的改进空间,特别是在多标签预测方面。本研究提出了一种新的多标签预测器 DRpred,用于 mRNA 亚细胞定位预测。该预测器首先利用贝叶斯网络来捕捉标签之间的依赖关系。随后,它将这些依赖关系与从 mRNA 序列中提取的特征结合起来,使用 Word2vec 形成输入。最后,它采用结合了 BiLSTM 和注意力机制的神经网络来捕获输入特征的内部关系,以进行 mRNA 亚细胞定位预测。在独立测试集上的实验验证表明,DRpred 在多标签预测中获得了有竞争力的预测性能,在预测单个亚细胞定位方面优于最先进的预测器,对于染色质、细胞质、胞质溶胶、外泌体、膜、核仁、核质、核和核糖体,分别获得了 82.14%、93.02%、80.37%、94.00%、90.58%、84.53%、82.01%、79.71%和 85.67%的准确率。这有望为生物学和医学研究提供深刻的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b04/11430783/8aa5cc0ab649/biomolecules-14-01067-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验