文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于计算机视觉的猪姿态识别:数据集与探索

Pig-Posture Recognition Based on Computer Vision: Dataset and Exploration.

作者信息

Shao Hongmin, Pu Jingyu, Mu Jiong

机构信息

College of Information Engineering, Sichuan Agricultural University, Ya'an 625000, China.

Sichuan Key Laboratory of Agricultural Information Engineering, Ya'an 625000, China.

出版信息

Animals (Basel). 2021 Apr 30;11(5):1295. doi: 10.3390/ani11051295.


DOI:10.3390/ani11051295
PMID:33946472
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8147168/
Abstract

Posture changes in pigs during growth are often precursors of disease. Monitoring pigs' behavioral activities can allow us to detect pathological changes in pigs earlier and identify the factors threatening the health of pigs in advance. Pigs tend to be farmed on a large scale, and manual observation by keepers is time consuming and laborious. Therefore, the use of computers to monitor the growth processes of pigs in real time, and to recognize the duration and frequency of pigs' postural changes over time, can prevent outbreaks of porcine diseases. The contributions of this article are as follows: (1) The first human-annotated pig-posture-identification dataset in the world was established, including 800 pictures of each of the four pig postures: standing, lying on the stomach, lying on the side, and exploring. (2) When using a deep separable convolutional network to classify pig postures, the accuracy was 92.45%. The results show that the method proposed in this paper achieves adequate pig-posture recognition in a piggery environment and may be suitable for livestock farm applications.

摘要

猪生长过程中的姿势变化往往是疾病的先兆。监测猪的行为活动可以使我们更早地检测到猪的病理变化,并提前识别威胁猪健康的因素。猪往往大规模养殖,饲养员人工观察既耗时又费力。因此,利用计算机实时监测猪的生长过程,并识别猪姿势随时间变化的持续时间和频率,可以预防猪病的爆发。本文的贡献如下:(1)建立了世界上第一个人工标注的猪姿势识别数据集,包括站立、俯卧、侧卧和探索这四种猪姿势的各800张图片。(2)使用深度可分离卷积网络对猪姿势进行分类时,准确率为92.45%。结果表明,本文提出的方法在养猪场环境中实现了足够的猪姿势识别,可能适用于畜牧场应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/80137b05b0ba/animals-11-01295-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/0e1a8792f5f7/animals-11-01295-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/468819e24844/animals-11-01295-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/ce7ef377b1d3/animals-11-01295-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/15c6c387b0f0/animals-11-01295-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/9ee43ae73904/animals-11-01295-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/d9566a7d341d/animals-11-01295-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/2c8e32dba673/animals-11-01295-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/80137b05b0ba/animals-11-01295-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/0e1a8792f5f7/animals-11-01295-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/468819e24844/animals-11-01295-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/ce7ef377b1d3/animals-11-01295-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/15c6c387b0f0/animals-11-01295-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/9ee43ae73904/animals-11-01295-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/d9566a7d341d/animals-11-01295-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/2c8e32dba673/animals-11-01295-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/047e/8147168/80137b05b0ba/animals-11-01295-g008.jpg

相似文献

[1]
Pig-Posture Recognition Based on Computer Vision: Dataset and Exploration.

Animals (Basel). 2021-4-30

[2]
Deep-Learning-Based Automatic Monitoring of Pigs' Physico-Temporal Activities at Different Greenhouse Gas Concentrations.

Animals (Basel). 2021-10-29

[3]
Automated Video Behavior Recognition of Pigs Using Two-Stream Convolutional Networks.

Sensors (Basel). 2020-2-17

[4]
Deep Learning and Machine Vision Approaches for Posture Detection of Individual Pigs.

Sensors (Basel). 2019-8-29

[5]
Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs.

Sci Rep. 2020-8-12

[6]
Efficient Detection Method of Pig-Posture Behavior Based on Multiple Attention Mechanism.

Comput Intell Neurosci. 2022

[7]
A Spatiotemporal Convolutional Network for Multi-Behavior Recognition of Pigs.

Sensors (Basel). 2020-4-22

[8]
Detection of Pig Movement and Aggression Using Deep Learning Approaches.

Animals (Basel). 2023-9-30

[9]
Posture Detection of Individual Pigs Based on Lightweight Convolution Neural Networks and Efficient Channel-Wise Attention.

Sensors (Basel). 2021-12-15

[10]
Depth-Based Detection of Standing-Pigs in Moving Noise Environments.

Sensors (Basel). 2017-11-29

引用本文的文献

[1]
Instance segmentation and automated pig posture recognition for smart health management.

J Anim Sci Technol. 2025-5

[2]
Leveraging Thermal Infrared Imaging for Pig Ear Detection Research: The TIRPigEar Dataset and Performances of Deep Learning Models.

Animals (Basel). 2024-12-27

[3]
Enhanced Swine Behavior Detection with YOLOs and a Mixed Efficient Layer Aggregation Network in Real Time.

Animals (Basel). 2024-11-23

[4]
GFI-YOLOv8: Sika Deer Posture Recognition Target Detection Method Based on YOLOv8.

Animals (Basel). 2024-9-11

[5]
Determining the Presence and Size of Shoulder Lesions in Sows Using Computer Vision.

Animals (Basel). 2023-12-29

[6]
Quantifying agonistic interactions between group-housed animals to derive social hierarchies using computer vision: a case study with commercially group-housed rabbits.

Sci Rep. 2023-8-29

[7]
A Survey on Artificial Intelligence in Posture Recognition.

Comput Model Eng Sci. 2023-4-23

[8]
An Improved YOLOv5 Model: Application to Mixed Impurities Detection for Walnut Kernels.

Foods. 2023-2-1

[9]
Estimation of Number of Pigs Taking in Feed Using Posture Filtration.

Sensors (Basel). 2022-12-26

[10]
StaticPigDet: Accuracy Improvement of Static Camera-Based Pig Monitoring Using Background and Facility Information.

Sensors (Basel). 2022-10-29

本文引用的文献

[1]
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.

IEEE Trans Pattern Anal Mach Intell. 2017-4-27

[2]
Early Detection of Infection in Pigs through an Online Monitoring System.

Transbound Emerg Dis. 2017-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索