Suppr超能文献

温度和冷冻持续时间对用于3D生物打印体外皮肤模型的水凝胶的影响

The Impact of Temperature and the Duration of Freezing on a Hydrogel Used for a 3D-Bioprinted In Vitro Skin Model.

作者信息

Sever Maja, Škrinjar Dominik, Maver Tina, Belak Monika, Zupanič Franc, Anžel Ivan, Zidarič Tanja

机构信息

Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia.

Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia.

出版信息

Biomedicines. 2024 Sep 5;12(9):2028. doi: 10.3390/biomedicines12092028.

Abstract

Skin bioprinting has the potential to revolutionize treatment approaches for injuries and surgical procedures, while also providing a valuable platform for assessing and screening cosmetic and pharmaceutical products. This technology offers key advantages, including flexibility and reproducibility, which enable the creation of complex, multilayered scaffolds that closely mimic the intricate microenvironment of native skin tissue. The development of an ideal hydrogel is critical for the successful bioprinting of these scaffolds with incorporated cells. In this study, we used a hydrogel formulation developed in our laboratory to fabricate a 3D-bioprinted skin model. The hydrogel composition was carefully selected based on its high compatibility with human skin cells, incorporating alginate, methyl cellulose, and nanofibrillated cellulose. One of the critical challenges in this process, particularly for its commercialization and large-scale production, is ensuring consistency with minimal batch-to-batch variations. To address this, we explored methods with which to preserve the physicochemical properties of the hydrogels, with a focus on freezing techniques. We validated the pre-frozen hydrogels' printability, rheology, and mechanical and surface properties. Our results revealed that extended freezing times significantly reduced the viscosity of the formulations due to ice crystal formation, leading to a redistribution of the polymer chains. This reduction in viscosity resulted in a more challenging extrusion and increased macro- and microporosity of the hydrogels, as confirmed by nanoCT imaging. The increased porosity led to greater water uptake, swelling, compromised scaffold integrity, and altered degradation kinetics. The insights gained from this study lay a solid foundation for advancing the development of an in vitro skin model with promising applications in preclinical and clinical research.

摘要

皮肤生物打印有潜力彻底改变损伤治疗方法和外科手术流程,同时还能为评估和筛选化妆品及药品提供一个有价值的平台。这项技术具有关键优势,包括灵活性和可重复性,这使得能够创建复杂的多层支架,紧密模拟天然皮肤组织的复杂微环境。开发一种理想的水凝胶对于成功生物打印这些包含细胞的支架至关重要。在本研究中,我们使用了在我们实验室开发的一种水凝胶配方来制造一个3D生物打印皮肤模型。该水凝胶组合物是基于其与人类皮肤细胞的高兼容性精心挑选的,包含藻酸盐、甲基纤维素和纳米原纤化纤维素。这个过程中的一个关键挑战,特别是对于其商业化和大规模生产而言,是确保最小的批次间差异并保持一致性。为了解决这个问题,我们探索了保持水凝胶物理化学性质的方法,重点是冷冻技术。我们验证了预冷冻水凝胶的可打印性、流变学以及力学和表面性质。我们的结果表明由于冰晶形成,延长的冷冻时间显著降低了配方的粘度,导致聚合物链重新分布。粘度的降低导致挤出更具挑战性,并且水凝胶的宏观和微观孔隙率增加,这通过纳米CT成像得到证实。孔隙率增加导致更大的吸水性、膨胀、支架完整性受损以及降解动力学改变。从这项研究中获得的见解为推进体外皮肤模型的开发奠定了坚实基础,该模型在临床前和临床研究中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18f4/11428255/a90e32af7605/biomedicines-12-02028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验