Suppr超能文献

慢性疼痛中阿片类药物使用障碍的预测模型:一项开发与验证研究。

Predictive Model for Opioid Use Disorder in Chronic Pain: A Development and Validation Study.

作者信息

Escorial Mónica, Muriel Javier, Margarit César, Agulló Laura, Zandonai Thomas, Panadero Ana, Morales Domingo, Peiró Ana M

机构信息

Pharmacogenetics Unit, Clinical Pharmacology Department, Alicante Institute for Health and Biomedical Research (ISABIAL), Diagnostic Center, Gray Building, 5th Floor, Avda Pintor Baeza, 12, 03010 Alicante, Spain.

Department of Pharmacology, Paediatrics and Organic Chemistry, Miguel Hernández University of Elche, 03550 Sant Joan de Alicante, Spain.

出版信息

Biomedicines. 2024 Sep 10;12(9):2056. doi: 10.3390/biomedicines12092056.

Abstract

BACKGROUND/OBJECTIVE: There are several questionnaires for the challenge of anticipating opioid use disorder (OUD). However, many are not specific for chronic non-cancer pain (CNCP) or have been developed in the American population, whose sociodemographic factors are very different from the Spanish population, leading to scarce translation into clinical practice. Thus, the aim of this study is to prospectively validate a predictive model for OUD in Spanish patients under long-term opioids.

METHODS

An innovative two-stage predictive model was developed from retrospective ( = 129) and non-overlapping prospective ( = 100) cohorts of real-world CNCP outpatients. All subjects used prescribed opioids for 6 or more months. Sociodemographic, clinical and pharmacological covariates were registered. Mu-opioid receptor 1 (, A118G, rs1799971) and catechol-O-methyltransferase (, G472A, rs4680) genetic variants plus cytochrome P450 2D6 (CYP2D6) liver enzyme phenotypes were also analyzed. The model performance and diagnostic accuracy were calculated.

RESULTS

The two-stage model comprised risk factors related to OUD (younger age, work disability and high daily opioid dose) and provided new useful information about other risk factors (low quality of life, -G allele and CYP2D6 extreme phenotypes). The validation showed a satisfactory accuracy (70% specificity and 75% sensitivity) for our predictive model with acceptable discrimination and goodness of fit.

CONCLUSIONS

Our study presents the results of an innovative model for predicting OUD in our setting. After external validation, it could represent a change in the paradigm of opioid treatment, helping clinicians to better identify and manage the risks and reduce the side effects and complications.

摘要

背景/目的:有几种用于预测阿片类药物使用障碍(OUD)的问卷。然而,许多问卷并非针对慢性非癌性疼痛(CNCP)设计,或者是在美国人群中开发的,其社会人口学因素与西班牙人群有很大差异,导致在临床实践中的翻译应用很少。因此,本研究的目的是前瞻性地验证西班牙长期使用阿片类药物患者中OUD的预测模型。

方法

从真实世界的CNCP门诊患者的回顾性队列(n = 129)和非重叠前瞻性队列(n = 100)中开发了一种创新的两阶段预测模型。所有受试者使用处方阿片类药物6个月或更长时间。记录社会人口学、临床和药理学协变量。还分析了μ-阿片受体1(OPRM1,A118G,rs1799971)和儿茶酚-O-甲基转移酶(COMT,G472A,rs4680)基因变异以及细胞色素P450 2D6(CYP2D6)肝酶表型。计算模型性能和诊断准确性。

结果

两阶段模型包含与OUD相关的危险因素(年龄较小、工作残疾和每日阿片类药物剂量较高),并提供了关于其他危险因素(生活质量低、G等位基因和CYP2D6极端表型)的新有用信息。验证表明,我们的预测模型具有令人满意的准确性(特异性70%,敏感性75%),具有可接受的区分度和拟合优度。

结论

我们的研究展示了在我们的环境中预测OUD的创新模型的结果。经过外部验证后,它可能代表阿片类药物治疗模式的改变,帮助临床医生更好地识别和管理风险,减少副作用和并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f002/11428664/59f44156b57f/biomedicines-12-02056-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验