Moreno-Lozano Maria Isabel, Ticlavilca-Inche Edward Jordy, Castañeda Pedro, Wong-Durand Sandra, Mauricio David, Oñate-Andino Alejandra
Information Systems Engineering Faculty, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru.
Software Engineering Faculty, Universidad Peruana de Ciencias Aplicadas, Lima 15023, Peru.
Diagnostics (Basel). 2024 Sep 13;14(18):2026. doi: 10.3390/diagnostics14182026.
In this article, various convolutional neural network (CNN) architectures for the detection of pterygium in the anterior segment of the eye are explored and compared. Five CNN architectures (ResNet101, ResNext101, Se-ResNext50, ResNext50, and MobileNet V2) are evaluated with the objective of identifying one that surpasses the precision and diagnostic efficacy of the current existing solutions. The results show that the Se-ResNext50 architecture offers the best overall performance in terms of precision, recall, and accuracy, with values of 93%, 92%, and 92%, respectively, for these metrics. These results demonstrate its potential to enhance diagnostic tools in ophthalmology.
在本文中,对用于检测眼前节翼状胬肉的各种卷积神经网络(CNN)架构进行了探索和比较。评估了五种CNN架构(ResNet101、ResNext101、Se-ResNext50、ResNext50和MobileNet V2),目的是确定一种超过现有解决方案的精度和诊断效能的架构。结果表明,Se-ResNext50架构在精度、召回率和准确率方面提供了最佳的整体性能,这些指标的值分别为93%、92%和92%。这些结果证明了其在增强眼科诊断工具方面的潜力。