Department of Electrical Engineering, School of Engineering, University of Management and Technology (UMT), Lahore 54770, Pakistan.
Department of Computer Engineering, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
Sensors (Basel). 2021 Dec 29;22(1):205. doi: 10.3390/s22010205.
Diabetic retinopathy (DR) is a human eye disease that affects people who are suffering from diabetes. It causes damage to their eyes, including vision loss. It is treatable; however, it takes a long time to diagnose and may require many eye exams. Early detection of DR may prevent or delay the vision loss. Therefore, a robust, automatic and computer-based diagnosis of DR is essential. Currently, deep neural networks are being utilized in numerous medical areas to diagnose various diseases. Consequently, deep transfer learning is utilized in this article. We employ five convolutional-neural-network-based designs (AlexNet, GoogleNet, Inception V4, Inception ResNet V2 and ResNeXt-50). A collection of DR pictures is created. Subsequently, the created collections are labeled with an appropriate treatment approach. This automates the diagnosis and assists patients through subsequent therapies. Furthermore, in order to identify the severity of DR retina pictures, we use our own dataset to train deep convolutional neural networks (CNNs). Experimental results reveal that the pre-trained model Se-ResNeXt-50 obtains the best classification accuracy of 97.53% for our dataset out of all pre-trained models. Moreover, we perform five different experiments on each CNN architecture. As a result, a minimum accuracy of 84.01% is achieved for a five-degree classification.
糖尿病性视网膜病变(DR)是一种影响糖尿病患者的眼部疾病。它会对眼睛造成伤害,包括视力丧失。它是可以治疗的;然而,诊断需要很长时间,可能需要多次眼部检查。早期发现 DR 可以预防或延迟视力丧失。因此,对 DR 进行强大、自动和基于计算机的诊断至关重要。目前,深度神经网络被广泛应用于许多医学领域,用于诊断各种疾病。因此,本文采用深度迁移学习。我们使用了五种基于卷积神经网络的设计(AlexNet、GoogleNet、Inception V4、Inception ResNet V2 和 ResNeXt-50)。创建了一个 DR 图片集合。随后,创建的集合被标记为适当的治疗方法。这可以实现自动化诊断,并通过后续治疗来帮助患者。此外,为了识别 DR 视网膜图片的严重程度,我们使用自己的数据集来训练深度卷积神经网络(CNNs)。实验结果表明,在所有预训练模型中,预训练模型 Se-ResNeXt-50 针对我们的数据集获得了最佳的分类准确率 97.53%。此外,我们对每个 CNN 架构进行了五次不同的实验。结果,对于五级分类,达到了最小 84.01%的准确率。
Sensors (Basel). 2021-12-29
Med Biol Eng Comput. 2023-8
J Digit Imaging. 2023-8
Annu Int Conf IEEE Eng Med Biol Soc. 2022-7
Graefes Arch Clin Exp Ophthalmol. 2022-4
Med Biol Eng Comput. 2023-9
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
Int J Ophthalmol. 2023-9-18
Diagnostics (Basel). 2023-2-17
Sensors (Basel). 2022-7-13
Health Inf Sci Syst. 2022-6-21
Appl Intell (Dordr). 2023
Comput Methods Programs Biomed. 2020-7
Scientifica (Cairo). 2016
World J Diabetes. 2016-8-25
Eye Vis (Lond). 2015-9-30
IEEE Trans Med Imaging. 2004-4
IEEE Trans Med Imaging. 2000-3