文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度神经网络的糖尿病视网膜病变自动诊断性能分析。

Performance Analysis of Deep-Neural-Network-Based Automatic Diagnosis of Diabetic Retinopathy.

机构信息

Department of Electrical Engineering, School of Engineering, University of Management and Technology (UMT), Lahore 54770, Pakistan.

Department of Computer Engineering, Umm Al-Qura University, Makkah 21955, Saudi Arabia.

出版信息

Sensors (Basel). 2021 Dec 29;22(1):205. doi: 10.3390/s22010205.


DOI:10.3390/s22010205
PMID:35009747
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8749542/
Abstract

Diabetic retinopathy (DR) is a human eye disease that affects people who are suffering from diabetes. It causes damage to their eyes, including vision loss. It is treatable; however, it takes a long time to diagnose and may require many eye exams. Early detection of DR may prevent or delay the vision loss. Therefore, a robust, automatic and computer-based diagnosis of DR is essential. Currently, deep neural networks are being utilized in numerous medical areas to diagnose various diseases. Consequently, deep transfer learning is utilized in this article. We employ five convolutional-neural-network-based designs (AlexNet, GoogleNet, Inception V4, Inception ResNet V2 and ResNeXt-50). A collection of DR pictures is created. Subsequently, the created collections are labeled with an appropriate treatment approach. This automates the diagnosis and assists patients through subsequent therapies. Furthermore, in order to identify the severity of DR retina pictures, we use our own dataset to train deep convolutional neural networks (CNNs). Experimental results reveal that the pre-trained model Se-ResNeXt-50 obtains the best classification accuracy of 97.53% for our dataset out of all pre-trained models. Moreover, we perform five different experiments on each CNN architecture. As a result, a minimum accuracy of 84.01% is achieved for a five-degree classification.

摘要

糖尿病性视网膜病变(DR)是一种影响糖尿病患者的眼部疾病。它会对眼睛造成伤害,包括视力丧失。它是可以治疗的;然而,诊断需要很长时间,可能需要多次眼部检查。早期发现 DR 可以预防或延迟视力丧失。因此,对 DR 进行强大、自动和基于计算机的诊断至关重要。目前,深度神经网络被广泛应用于许多医学领域,用于诊断各种疾病。因此,本文采用深度迁移学习。我们使用了五种基于卷积神经网络的设计(AlexNet、GoogleNet、Inception V4、Inception ResNet V2 和 ResNeXt-50)。创建了一个 DR 图片集合。随后,创建的集合被标记为适当的治疗方法。这可以实现自动化诊断,并通过后续治疗来帮助患者。此外,为了识别 DR 视网膜图片的严重程度,我们使用自己的数据集来训练深度卷积神经网络(CNNs)。实验结果表明,在所有预训练模型中,预训练模型 Se-ResNeXt-50 针对我们的数据集获得了最佳的分类准确率 97.53%。此外,我们对每个 CNN 架构进行了五次不同的实验。结果,对于五级分类,达到了最小 84.01%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/95a93d6548e2/sensors-22-00205-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/108b3b6359cf/sensors-22-00205-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/1c34f40b099e/sensors-22-00205-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/6251cad7c895/sensors-22-00205-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/9e288eebd885/sensors-22-00205-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/58c65f42ab0d/sensors-22-00205-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/55be93341cf0/sensors-22-00205-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/6afd4f6d7d0a/sensors-22-00205-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/d61834e1dc5d/sensors-22-00205-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/95a93d6548e2/sensors-22-00205-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/108b3b6359cf/sensors-22-00205-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/1c34f40b099e/sensors-22-00205-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/6251cad7c895/sensors-22-00205-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/9e288eebd885/sensors-22-00205-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/58c65f42ab0d/sensors-22-00205-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/55be93341cf0/sensors-22-00205-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/6afd4f6d7d0a/sensors-22-00205-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/d61834e1dc5d/sensors-22-00205-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee21/8749542/95a93d6548e2/sensors-22-00205-g009.jpg

相似文献

[1]
Performance Analysis of Deep-Neural-Network-Based Automatic Diagnosis of Diabetic Retinopathy.

Sensors (Basel). 2021-12-29

[2]
Transfer learning-driven ensemble model for detection of diabetic retinopathy disease.

Med Biol Eng Comput. 2023-8

[3]
Artificial intelligence based glaucoma and diabetic retinopathy detection using MATLAB - retrained AlexNet convolutional neural network.

F1000Res. 2023

[4]
Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images.

Sensors (Basel). 2019-8-17

[5]
Diabetic Retinopathy Prediction Based on Wavelet Decomposition and Modified Capsule Network.

J Digit Imaging. 2023-8

[6]
Collaborative Deep Learning for Privacy Preserving Diabetic Retinopathy Detection.

Annu Int Conf IEEE Eng Med Biol Soc. 2022-7

[7]
Untangling Computer-Aided Diagnostic System for Screening Diabetic Retinopathy Based on Deep Learning Techniques.

Sensors (Basel). 2022-2-24

[8]
Deep feed forward neural network-based screening system for diabetic retinopathy severity classification using the lion optimization algorithm.

Graefes Arch Clin Exp Ophthalmol. 2022-4

[9]
Contrastive self-supervised learning for diabetic retinopathy early detection.

Med Biol Eng Comput. 2023-9

[10]
Diabetic Retinopathy (DR) Severity Level Classification Using Multimodel Convolutional Neural Networks.

Annu Int Conf IEEE Eng Med Biol Soc. 2020-7

引用本文的文献

[1]
Color fundus photograph-based diabetic retinopathy grading via label relaxed collaborative learning on deep features and radiomics features.

Front Cell Dev Biol. 2025-1-9

[2]
A Performance Evaluation of Convolutional Neural Network Architectures for Pterygium Detection in Anterior Segment Eye Images.

Diagnostics (Basel). 2024-9-13

[3]
Deep neural network for prediction of diet quality among doctors and nurses in North China during the COVID-19 pandemic.

Front Public Health. 2023

[4]
Research progress in artificial intelligence assisted diabetic retinopathy diagnosis.

Int J Ophthalmol. 2023-9-18

[5]
Automated Diagnosis of Diabetic Retinopathy Using Deep Learning: On the Search of Segmented Retinal Blood Vessel Images for Better Performance.

Bioengineering (Basel). 2023-3-26

[6]
A Regression-Based Approach to Diabetic Retinopathy Diagnosis Using Efficientnet.

Diagnostics (Basel). 2023-2-17

[7]
Machine-learning prediction of BMI change among doctors and nurses in North China during the COVID-19 pandemic.

Front Nutr. 2023-1-26

[8]
Ultrasound image intelligent diagnosis in community-acquired pneumonia of children using convolutional neural network-based transfer learning.

Front Pediatr. 2022-11-24

[9]
An Ensemble Approach to Predict Early-Stage Diabetes Risk Using Machine Learning: An Empirical Study.

Sensors (Basel). 2022-7-13

[10]
Optical coherence tomography image based eye disease detection using deep convolutional neural network.

Health Inf Sci Syst. 2022-6-21

本文引用的文献

[1]
RETRACTED ARTICLE: Deep learning system to screen coronavirus disease 2019 pneumonia.

Appl Intell (Dordr). 2023

[2]
Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening.

Comput Methods Programs Biomed. 2020-7

[3]
Global prevalence of diabetic retinopathy: protocol for a systematic review and meta-analysis.

BMJ Open. 2019-3-3

[4]
A Review on Recent Developments for Detection of Diabetic Retinopathy.

Scientifica (Cairo). 2016

[5]
Treatment of diabetic retinopathy: Recent advances and unresolved challenges.

World J Diabetes. 2016-8-25

[6]
Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss.

Eye Vis (Lond). 2015-9-30

[7]
Ridge-based vessel segmentation in color images of the retina.

IEEE Trans Med Imaging. 2004-4

[8]
Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response.

IEEE Trans Med Imaging. 2000-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索