Suppr超能文献

一种基于卷积神经网络(CNN)架构的自动方法,用于从胸部X光图像中检测新冠肺炎。

An automatic approach based on CNN architecture to detect Covid-19 disease from chest X-ray images.

作者信息

Hira Swati, Bai Anita, Hira Sanchit

机构信息

Department of Computer Science and Engineering, Shri Ramdeobaba College of Engineering and Management, Nagpur, India.

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Deemed to be University, Hyderabad, Telangana 500075 India.

出版信息

Appl Intell (Dordr). 2021;51(5):2864-2889. doi: 10.1007/s10489-020-02010-w. Epub 2020 Nov 27.

Abstract

Novel coronavirus (COVID-19) is started from Wuhan (City in China), and is rapidly spreading among people living in other countries. Today, around 215 countries are affected by COVID-19 disease. WHO announced approximately number of cases 11,274,600 worldwide. Due to rapidly rising cases daily in the hospitals, there are a limited number of resources available to control COVID-19 disease. Therefore, it is essential to develop an accurate diagnosis of COVID-19 disease. Early diagnosis of COVID-19 patients is important for preventing the disease from spreading to others. In this paper, we proposed a deep learning based approach that can differentiate COVID- 19 disease patients from viral pneumonia, bacterial pneumonia, and healthy (normal) cases. In this approach, deep transfer learning is adopted. We used binary and multi-class dataset which is categorized in four types for experimentation: (i) Collection of 728 X-ray images including 224 images with confirmed COVID-19 disease and 504 normal condition images (ii) Collection of 1428 X-ray images including 224 images with confirmed COVID-19 disease, 700 images with confirmed common bacterial pneumonia, and 504 normal condition images. (iii) Collections of 1442 X- ray images including 224 images with confirmed COVID-19 disease, 714 images with confirmed bacterial and viral pneumonia, and 504 images of normal conditions (iv) Collections of 5232 X- ray images including 2358 images with confirmed bacterial and 1345 with viral pneumonia, and 1346 images of normal conditions. In this paper, we have used nine convolutional neural network based architecture (AlexNet, GoogleNet, ResNet-50, Se-ResNet-50, DenseNet121, Inception V4, Inception ResNet V2, ResNeXt-50, and Se-ResNeXt-50). Experimental results indicate that the pre trained model Se-ResNeXt-50 achieves the highest classification accuracy of 99.32% for binary class and 97.55% for multi-class among all pre-trained models.

摘要

新型冠状病毒(COVID-19)起源于武汉(中国的一个城市),并在其他国家的人群中迅速传播。如今,约215个国家受到COVID-19疾病的影响。世界卫生组织公布全球确诊病例数约为11274600例。由于医院里的病例每天都在迅速增加,可用于控制COVID-19疾病的资源有限。因此,准确诊断COVID-19疾病至关重要。早期诊断COVID-19患者对于防止疾病传播给他人很重要。在本文中,我们提出了一种基于深度学习的方法,该方法可以区分COVID-19疾病患者与病毒性肺炎、细菌性肺炎和健康(正常)病例。在这种方法中,采用了深度迁移学习。我们使用了分为四类的二元和多类数据集进行实验:(i)收集728张X射线图像,包括224张确诊为COVID-19疾病的图像和504张正常情况图像;(ii)收集1428张X射线图像,包括224张确诊为COVID-19疾病的图像、700张确诊为常见细菌性肺炎的图像和504张正常情况图像;(iii)收集1442张X射线图像,包括224张确诊为COVID-19疾病的图像、714张确诊为细菌性和病毒性肺炎的图像以及504张正常情况图像;(iv)收集5232张X射线图像,包括2358张确诊为细菌性肺炎的图像和1345张确诊为病毒性肺炎的图像以及1346张正常情况图像。在本文中,我们使用了九种基于卷积神经网络的架构(AlexNet、GoogleNet、ResNet-50、Se-ResNet-50、DenseNet121、Inception V4、Inception ResNet V2、ResNeXt-50和Se-ResNeXt-50)。实验结果表明,在所有预训练模型中,预训练模型Se-ResNeXt-50在二元分类中达到了最高分类准确率99.32%,在多类分类中达到了97.55%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1428/7693857/529ec592d996/10489_2020_2010_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验