Suppr超能文献

基于Yolov8的模型开发,用于从肩部X线图像测量临界肩角(CSA)、肩峰外侧角(LAA)和肩峰指数(AI)

The Development of a Yolov8-Based Model for the Measurement of Critical Shoulder Angle (CSA), Lateral Acromion Angle (LAA), and Acromion Index (AI) from Shoulder X-ray Images.

作者信息

Selçuk Turab

机构信息

Department of Electrical and Electronics Engineering, Kahramanmaras Sutcu Imam University, 46050 Onikişubat, Turkey.

出版信息

Diagnostics (Basel). 2024 Sep 22;14(18):2092. doi: 10.3390/diagnostics14182092.

Abstract

The accurate and effective evaluation of parameters such as critical shoulder angle, lateral acromion angle, and acromion index from shoulder X-ray images is crucial for identifying pathological changes and assessing disease risk in the shoulder joint. In this study, a YOLOv8-based model was developed to automatically measure these three parameters together, contributing to the existing literature. Initially, YOLOv8 was used to segment the acromion, glenoid, and humerus regions, after which the CSA, LAA angles, and AI between these regions were calculated. The MURA dataset was employed in this study. Segmentation performance was evaluated with the Dice and Jaccard similarity indices, both exceeding 0.9. Statistical analyses of the measurement performance, including Pearson correlation coefficient, RMSE, and ICC values demonstrated that the proposed model exhibits high consistency and similarity with manual measurements. The results indicate that automatic measurement methods align with manual measurements with high accuracy and offer an effective alternative for clinical applications. This study provides valuable insights for the early diagnosis and management of shoulder diseases and makes a significant contribution to existing measurement methods.

摘要

从肩部X线图像中准确有效地评估诸如临界肩角、肩峰外侧角和肩峰指数等参数,对于识别肩关节的病理变化和评估疾病风险至关重要。在本研究中,开发了一种基于YOLOv8的模型来同时自动测量这三个参数,为现有文献做出了贡献。最初,使用YOLOv8分割肩峰、关节盂和肱骨区域,然后计算这些区域之间的临界肩角(CSA)、肩峰外侧角(LAA)和肩峰指数(AI)。本研究采用了MURA数据集。用Dice和Jaccard相似性指数评估分割性能,两者均超过0.9。对测量性能的统计分析,包括Pearson相关系数、均方根误差(RMSE)和组内相关系数(ICC)值表明,所提出的模型与手动测量具有高度的一致性和相似性。结果表明,自动测量方法与手动测量具有高度的准确性,为临床应用提供了一种有效的替代方法。本研究为肩部疾病的早期诊断和管理提供了有价值的见解,并对现有的测量方法做出了重大贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f22/11431194/8418b6557e4d/diagnostics-14-02092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验