Suppr超能文献

scVGATAE:一种用于单细胞RNA测序数据聚类的变分图注意力自动编码器模型

scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data.

作者信息

Liu Lijun, Wu Xiaoyang, Yu Jun, Zhang Yuduo, Niu Kaixing, Yu Anli

机构信息

School of Science, Dalian Minzu University, Dalian 116600, China.

出版信息

Biology (Basel). 2024 Sep 11;13(9):713. doi: 10.3390/biology13090713.

Abstract

Single-cell RNA sequencing (scRNA-seq) is now a successful technology for identifying cell heterogeneity, revealing new cell subpopulations, and predicting developmental trajectories. A crucial component in scRNA-seq is the precise identification of cell subsets. Although many unsupervised clustering methods have been developed for clustering cell subpopulations, the performance of these methods is prone to be affected by dropout, high dimensionality, and technical noise. Additionally, most existing methods are time-consuming and fail to fully consider the potential correlations between cells. In this paper, we propose a novel unsupervised clustering method called scVGATAE (Single-cell Variational Graph Attention Autoencoder) for scRNA-seq data. This method constructs a reliable cell graph through network denoising, utilizes a novel variational graph autoencoder model integrated with graph attention networks to aggregate neighbor information and learn the distribution of the low-dimensional representations of cells, and adaptively determines the model training iterations for various datasets. Finally, the obtained low-dimensional representations of cells are clustered using kmeans. Experiments on nine public datasets show that scVGATAE outperforms classical and state-of-the-art clustering methods.

摘要

单细胞RNA测序(scRNA-seq)如今是一种用于识别细胞异质性、揭示新的细胞亚群以及预测发育轨迹的成功技术。scRNA-seq中的一个关键组成部分是细胞亚群的精确识别。尽管已经开发了许多无监督聚类方法来对细胞亚群进行聚类,但这些方法的性能容易受到数据丢失、高维度和技术噪声的影响。此外,大多数现有方法耗时且未能充分考虑细胞之间的潜在相关性。在本文中,我们针对scRNA-seq数据提出了一种名为scVGATAE(单细胞变分图注意力自动编码器)的新型无监督聚类方法。该方法通过网络去噪构建可靠的细胞图,利用与图注意力网络集成的新型变分图自动编码器模型聚合邻居信息并学习细胞低维表示的分布,并针对各种数据集自适应地确定模型训练迭代次数。最后,使用kmeans对获得的细胞低维表示进行聚类。在九个公共数据集上的实验表明,scVGATAE优于经典和最新的聚类方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4653/11428844/6ed5b5a03e02/biology-13-00713-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验