Ileșan Robert Radu, Ștefănigă Sebastian-Aurelian, Fleșar Radu, Beyer Michel, Ginghină Elena, Peștean Ana Sorina, Hirsch Martin C, Perju-Dumbravă Lăcrămioara, Faragó Paul
Department of Neurology and Pediatric Neurology, Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, 400012 Cluj-Napoca, Romania.
Department of Oral and Maxillofacial Surgery, Lucerne Cantonal Hospital, Spitalstrasse, 6000 Lucerne, Switzerland.
J Clin Med. 2024 Sep 20;13(18):5573. doi: 10.3390/jcm13185573.
: Parkinson's disease (PD) has transitioned from a rare condition in 1817 to the fastest-growing neurological disorder globally. The significant increase in cases from 2.5 million in 1990 to 6.1 million in 2016, coupled with predictions of a further doubling by 2040, underscores an impending healthcare challenge. This escalation aligns with global demographic shifts, including rising life expectancy and a growing global population. The economic impact, notably in the U.S., reached $51.9 billion in 2017, with projections suggesting a 46% increase by 2037, emphasizing the substantial socio-economic implications for both patients and caregivers. Coupled with a worldwide demand for health workers that is expected to rise to 80 million by 2030, we have fertile ground for a pandemic. : Our transdisciplinary research focused on early PD detection through running speech and continuous handwriting analysis, incorporating medical, biomedical engineering, AI, and linguistic expertise. The cohort comprised 30 participants, including 20 PD patients at stages 1-4 on the Hoehn and Yahr scale and 10 healthy controls. We employed advanced AI techniques to analyze correlation plots generated from speech and handwriting features, aiming to identify prodromal PD biomarkers. : The study revealed distinct speech and handwriting patterns in PD patients compared to controls. Our ParkinsonNet model demonstrated high predictive accuracy, with F1 scores of 95.74% for speech and 96.72% for handwriting analyses. These findings highlight the potential of speech and handwriting as effective early biomarkers for PD. : The integration of AI as a decision support system in analyzing speech and handwriting presents a promising approach for early PD detection. This methodology not only offers a novel diagnostic tool but also contributes to the broader understanding of PD's early manifestations. Further research is required to validate these findings in larger, diverse cohorts and to integrate these tools into clinical practice for timely PD pre-diagnosis and management.
帕金森病(PD)已从1817年的一种罕见病症转变为全球增长最快的神经疾病。病例数从1990年的250万显著增加到2016年的610万,再加上预计到2040年将进一步翻倍,凸显了即将到来的医疗保健挑战。这种增长与全球人口结构变化相吻合,包括预期寿命的延长和全球人口的增长。经济影响显著,尤其是在美国,2017年达到519亿美元,预计到2037年将增长46%,这凸显了对患者和护理人员的重大社会经济影响。再加上预计到2030年全球对卫生工作者的需求将增至8000万,我们正面临着一场大流行的隐患。
我们的跨学科研究专注于通过连续语音和笔迹分析来早期检测帕金森病,融合了医学、生物医学工程、人工智能和语言学专业知识。该队列包括30名参与者,其中20名是处于Hoehn和Yahr量表1 - 4期的帕金森病患者,10名是健康对照者。我们采用先进的人工智能技术分析从语音和笔迹特征生成的相关图,旨在识别帕金森病前驱生物标志物。
研究发现,与对照组相比,帕金森病患者有明显不同的语音和笔迹模式。我们的帕金森病网络模型显示出高预测准确性,语音分析的F1分数为95.74%,笔迹分析的F1分数为96.72%。这些发现突出了语音和笔迹作为帕金森病有效早期生物标志物的潜力。
将人工智能作为决策支持系统整合到语音和笔迹分析中,为帕金森病的早期检测提供了一种有前景的方法。这种方法不仅提供了一种新颖的诊断工具,还有助于更广泛地理解帕金森病的早期表现。需要进一步研究在更大、更多样化的队列中验证这些发现,并将这些工具整合到临床实践中,以便及时进行帕金森病的预诊断和管理。