Suppr超能文献

人工智能和机器学习在帕金森病的检测、诊断和治疗中的新时代。

New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson's disease.

机构信息

Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.

Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, USA.

出版信息

Ageing Res Rev. 2023 Sep;90:102013. doi: 10.1016/j.arr.2023.102013. Epub 2023 Jul 8.

Abstract

Parkinson's disease (PD) is characterized by the loss of neuronal cells, which leads to synaptic dysfunction and cognitive defects. Despite the advancements in treatment strategies, the management of PD is still a challenging event. Early prediction and diagnosis of PD are of utmost importance for effective management of PD. In addition, the classification of patients with PD as compared to normal healthy individuals also imposes drawbacks in the early diagnosis of PD. To address these challenges, artificial intelligence (AI) and machine learning (ML) models have been implicated in the diagnosis, prediction, and treatment of PD. Recent times have also demonstrated the implication of AI and ML models in the classification of PD based on neuroimaging methods, speech recording, gait abnormalities, and others. Herein, we have briefly discussed the role of AI and ML in the diagnosis, treatment, and identification of novel biomarkers in the progression of PD. We have also highlighted the role of AI and ML in PD management through altered lipidomics and gut-brain axis. We briefly explain the role of early PD detection through AI and ML algorithms based on speech recordings, handwriting patterns, gait abnormalities, and neuroimaging techniques. Further, the review discuss the potential role of the metaverse, the Internet of Things, and electronic health records in the effective management of PD to improve the quality of life. Lastly, we also focused on the implementation of AI and ML-algorithms in neurosurgical process and drug discovery.

摘要

帕金森病(PD)的特征是神经元细胞的丧失,这导致突触功能障碍和认知缺陷。尽管在治疗策略方面取得了进展,但 PD 的管理仍然是一个具有挑战性的事件。早期预测和诊断 PD 对于有效管理 PD 至关重要。此外,与正常健康个体相比,将 PD 患者进行分类也给 PD 的早期诊断带来了困难。为了解决这些挑战,人工智能(AI)和机器学习(ML)模型已被应用于 PD 的诊断、预测和治疗。最近的研究还表明,AI 和 ML 模型在基于神经影像学方法、语音记录、步态异常等对 PD 进行分类方面也具有应用价值。在此,我们简要讨论了 AI 和 ML 在 PD 的诊断、治疗和新型生物标志物的鉴定方面的作用,这些标志物在 PD 的进展中发挥作用。我们还强调了 AI 和 ML 在通过改变脂质组学和肠脑轴来管理 PD 方面的作用。我们简要解释了基于语音记录、笔迹模式、步态异常和神经影像学技术的 AI 和 ML 算法在早期 PD 检测中的作用。此外,该综述还讨论了元宇宙、物联网和电子健康记录在有效管理 PD 以提高生活质量方面的潜在作用。最后,我们还专注于在神经外科手术和药物发现过程中实施 AI 和 ML 算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验