Navarro Ros Fernando M, Maya Viejo José David
Centro de Salud Malilla, Carrer de Malilla 52D, Quatre Carreres, 46026 Valencia, Spain.
Centro de Salud de Camas, Santa Maria de Gracia 54, 41900 Camas, Spain.
J Clin Med. 2024 Sep 21;13(18):5609. doi: 10.3390/jcm13185609.
Managing chronic respiratory diseases such as asthma and chronic obstructive pulmonary disease (COPD) within the Spanish (SNS) presents significant challenges, particularly due to their high prevalence and poor disease control rates-approximately 45.1% for asthma and 63.2% for COPD. This study aims to develop a novel predictive model using electronic health records (EHRs) to estimate the likelihood of poor disease control in these patients, thereby enabling more efficient management in primary care settings. The Seleida project employed a bioinformatics approach to identify significant clinical variables from EHR data in primary care centers in Seville and Valencia. Statistically significant variables were incorporated into a logistic regression model to predict poor disease control in patients with asthma and COPD patients. Key variables included the number of short-acting β-agonist (SABA) and short-acting muscarinic antagonist (SAMA) canisters, prednisone courses, and antibiotic courses over the past year. The developed model demonstrated high accuracy, sensitivity, and specificity in predicting poorly controlled disease in both asthma and COPD patients. These findings suggest that the model could serve as a valuable tool for the early identification of at-risk patients, allowing healthcare providers to prioritize and optimize resource allocation in primary care settings. Integrating this predictive model into primary care practice could enhance the proactive management of asthma and COPD, potentially improving patient outcomes and reducing the burden on healthcare systems. Further validation in diverse clinical settings is warranted to confirm the model's efficacy and generalizability.
在西班牙国家卫生系统(SNS)中管理哮喘和慢性阻塞性肺疾病(COPD)等慢性呼吸道疾病面临重大挑战,特别是由于其高患病率和疾病控制率低——哮喘约为45.1%,COPD约为63.2%。本研究旨在开发一种使用电子健康记录(EHR)的新型预测模型,以估计这些患者疾病控制不佳的可能性,从而在初级保健环境中实现更有效的管理。Seleida项目采用生物信息学方法,从塞维利亚和巴伦西亚初级保健中心的EHR数据中识别重要的临床变量。具有统计学意义的变量被纳入逻辑回归模型,以预测哮喘患者和COPD患者的疾病控制不佳情况。关键变量包括过去一年中短效β-激动剂(SABA)和短效毒蕈碱拮抗剂(SAMA)吸入器的使用数量、泼尼松疗程和抗生素疗程。所开发的模型在预测哮喘和COPD患者疾病控制不佳方面显示出高准确性、敏感性和特异性。这些发现表明,该模型可作为早期识别高危患者的有价值工具,使医疗保健提供者能够在初级保健环境中优先安排并优化资源分配。将这种预测模型整合到初级保健实践中可以加强对哮喘和COPD的主动管理,有可能改善患者预后并减轻医疗系统的负担。有必要在不同临床环境中进行进一步验证,以确认该模型的有效性和通用性。