Barshilia Devesh, Komaram Akhil Chandrakanth, Chau Lai-Kwan, Chang Guo-En
Department of Mechanical Engineering and Advanced Institute of Manufacturing with High-Tech Innovations, National Chung Cheng University, Chiayi 621301, Taiwan.
Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chiayi 621301, Taiwan.
Micromachines (Basel). 2024 Sep 21;15(9):1169. doi: 10.3390/mi15091169.
DNA is fundamental for storing and transmitting genetic information. Analyzing DNA or RNA base sequences enables the identification of genetic disorders, monitoring gene expression, and detecting pathogens. Traditional detection techniques like polymerase chain reaction (PCR) and next-generation sequencing (NGS) have limitations, including complexity, high cost, and the need for advanced computational skills. Therefore, there is a significant demand for enzyme-free and amplification-free strategies for rapid, low-cost, and sensitive DNA detection. DNA biosensors, especially those utilizing plasmonic nanomaterials, offer a promising solution. This study introduces a novel DNA-functionalized waveguide-enhanced nanoplasmonic optofluidic biosensor using a nanogold-linked sorbent assay for enzyme-free and amplification-free DNA detection. Integrating plasmonic gold nanoparticles (AuNPs) with a glass planar waveguide (WG) and a microfluidic channel, fabricated through cost-effective, vacuum-free methods, the biosensor achieves specific detection of complementary target DNA sequences. Utilizing a sandwich architecture, AuNPs labeled with detection DNA probes enhance sensitivity by altering evanescent wave distribution and inducing plasmon resonance modes. The biosensor demonstrated exceptional performance in DNA detection, achieving a limit of detection (LOD) of 33.1 fg/mL (4.36 fM) with a rapid response time of approximately 8 min. This ultrasensitive, rapid, and cost-effective biosensor exhibits minimal background nonspecific adsorption, making it highly suitable for clinical applications and early disease diagnosis. The innovative design and fabrication processes offer significant advantages for mass production, presenting a viable tool for precise disease diagnostics and improved clinical outcomes.
DNA是存储和传递遗传信息的基础。分析DNA或RNA碱基序列能够识别遗传疾病、监测基因表达以及检测病原体。像聚合酶链反应(PCR)和下一代测序(NGS)这样的传统检测技术存在局限性,包括操作复杂、成本高昂以及需要先进的计算技能。因此,对于用于快速、低成本且灵敏的DNA检测的无酶和无扩增策略有着巨大需求。DNA生物传感器,尤其是那些利用等离子体纳米材料的传感器,提供了一个有前景的解决方案。本研究介绍了一种新型的DNA功能化波导增强纳米等离子体光流体生物传感器,它采用纳米金连接吸附剂测定法进行无酶和无扩增的DNA检测。通过经济高效的无真空方法将等离子体金纳米颗粒(AuNP)与玻璃平面波导(WG)和微流体通道集成在一起,该生物传感器实现了对互补目标DNA序列的特异性检测。利用三明治结构,用检测DNA探针标记的AuNP通过改变倏逝波分布和诱导等离子体共振模式来提高灵敏度。该生物传感器在DNA检测中表现出卓越性能,检测限(LOD)达到33.1 fg/mL(4.36 fM),响应时间约为8分钟,快速。这种超灵敏、快速且经济高效的生物传感器背景非特异性吸附极小,非常适合临床应用和疾病早期诊断。创新的设计和制造工艺为大规模生产提供了显著优势,为精确的疾病诊断和改善临床结果提供了一个可行的工具。