文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用关联规则获取整个 COVID-19 大流行期间的普遍症状集:对巴西圣保罗 COVID-19 病例与未特指 SARS 病例之间相似性的分析。

Using Association Rules to Obtain Sets of Prevalent Symptoms throughout the COVID-19 Pandemic: An Analysis of Similarities between Cases of COVID-19 and Unspecified SARS in São Paulo-Brazil.

机构信息

Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.

Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil.

出版信息

Int J Environ Res Public Health. 2024 Sep 1;21(9):1164. doi: 10.3390/ijerph21091164.


DOI:10.3390/ijerph21091164
PMID:39338047
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11430988/
Abstract

The efficient recognition of symptoms in viral infections holds promise for swift and precise diagnosis, thus mitigating health implications and the potential recurrence of infections. COVID-19 presents unique challenges due to various factors influencing diagnosis, especially regarding disease symptoms that closely resemble those of other viral diseases, including other strains of SARS, thus impacting the identification of useful and meaningful symptom patterns as they emerge in infections. Therefore, this study proposes an association rule mining approach, utilising the Apriori algorithm to analyse the similarities between individuals with confirmed SARS-CoV-2 diagnosis and those with unspecified SARS diagnosis. The objective is to investigate, through symptom rules, the presence of COVID-19 patterns among individuals initially not diagnosed with the disease. Experiments were conducted using cases from Brazilian SARS datasets for São Paulo State. Initially, reporting percentage similarities of symptoms in both groups were analysed. Subsequently, the top ten rules from each group were compared. Finally, a search for the top five most frequently occurring positive rules among the unspecified ones, and vice versa, was conducted to identify identical rules, with a particular focus on the presence of positive rules among the rules of individuals initially diagnosed with unspecified SARS.

摘要

病毒感染症状的有效识别有望实现快速、准确的诊断,从而减轻健康影响和感染的潜在复发。由于影响诊断的各种因素,特别是与其他病毒疾病(包括其他 SARS 株)非常相似的疾病症状,COVID-19 带来了独特的挑战,这影响了有用和有意义的症状模式的识别,因为它们在感染中出现。因此,本研究提出了一种关联规则挖掘方法,利用 Apriori 算法分析确诊 SARS-CoV-2 诊断个体与未明确 SARS 诊断个体之间的相似性。目的是通过症状规则研究最初未被诊断为该疾病的个体中 COVID-19 模式的存在。实验使用来自巴西 SARS 数据集的圣保罗州病例进行。首先,分析了两组症状报告百分比的相似性。随后,比较了每组的前十个规则。最后,在未明确诊断的 SARS 中搜索最常出现的前五个阳性规则,并反过来寻找阳性规则,以识别相同的规则,特别关注最初诊断为未明确 SARS 的个体规则中阳性规则的存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/6fe5bc602679/ijerph-21-01164-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/9a5acbf50e3b/ijerph-21-01164-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/011862365c55/ijerph-21-01164-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/fff2599455e9/ijerph-21-01164-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/c3896e2d4bf6/ijerph-21-01164-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/6fe5bc602679/ijerph-21-01164-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/9a5acbf50e3b/ijerph-21-01164-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/011862365c55/ijerph-21-01164-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/fff2599455e9/ijerph-21-01164-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/c3896e2d4bf6/ijerph-21-01164-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f49/11430988/6fe5bc602679/ijerph-21-01164-g005.jpg

相似文献

[1]
Using Association Rules to Obtain Sets of Prevalent Symptoms throughout the COVID-19 Pandemic: An Analysis of Similarities between Cases of COVID-19 and Unspecified SARS in São Paulo-Brazil.

Int J Environ Res Public Health. 2024-9-1

[2]
Discovering symptom patterns of COVID-19 patients using association rule mining.

Comput Biol Med. 2021-4

[3]
High prevalence of SARS-CoV-2 infection among symptomatic healthcare workers in a large university tertiary hospital in São Paulo, Brazil.

BMC Infect Dis. 2020-12-2

[4]
Severe Acute Respiratory Syndrome by SARS-CoV-2 Infection or Other Etiologic Agents Among Brazilian Indigenous Population: An Observational Study from the First Year of Coronavirus Disease (COVID)-19 Pandemic.

Lancet Reg Health Am. 2022-4

[5]
COVID-19 pandemic: environmental and social factors influencing the spread of SARS-CoV-2 in São Paulo, Brazil.

Environ Sci Pollut Res Int. 2021-8

[6]
Assessment of initial SARS-CoV-2 seroprevalence in the most affected districts in the municipality of São Paulo, Brazil.

Braz J Infect Dis. 2021

[7]
Genomic monitoring of the SARS-CoV-2 B1.1.7 (WHO VOC Alpha) in the Sao Paulo state, Brazil.

Virus Res. 2022-1-15

[8]
SARS-CoV-2 reinfection: report of two cases in Southeast Brazil.

Rev Inst Med Trop Sao Paulo. 2021

[9]
Investigating spatiotemporal patterns of the COVID-19 in São Paulo State, Brazil.

Geospat Health. 2020-11-26

[10]
Travel-related control measures to contain the COVID-19 pandemic: a rapid review.

Cochrane Database Syst Rev. 2020-10-5

引用本文的文献

[1]
Pattern recognition in SARS cases: insights from -SNE and k-means clustering applied to COVID-19 symptomatology.

Front Artif Intell. 2025-3-27

本文引用的文献

[1]
Severity of COVID-19 in Patients with Diarrhoea: A Systematic Review and Meta-Analysis.

Trop Med Infect Dis. 2023-1-26

[2]
Forecasting COVID-19 cases using time series modeling and association rule mining.

BMC Med Res Methodol. 2022-11-1

[3]
Brief dispersion of a putative B.1.1.28-derived SARS-CoV-2 lineage harboring additional N234P and E471Q spike protein mutations in individuals crossing the Argentina-Brazil border.

Travel Med Infect Dis. 2022

[4]
Modeling the onset of symptoms of COVID-19: Effects of SARS-CoV-2 variant.

PLoS Comput Biol. 2021-12

[5]
COVID-19 patient diagnosis and treatment data mining algorithm based on association rules.

Expert Syst. 2021-10-26

[6]
SARS-CoV-2 variant N.9 identified in Rio de Janeiro, Brazil.

Mem Inst Oswaldo Cruz. 2021

[7]
Clinical features of COVID-19 by SARS-CoV-2 Gamma variant: A prospective cohort study of vaccinated and unvaccinated healthcare workers.

J Infect. 2022-2

[8]
The emergence of novel SARS-CoV-2 variant P.1 in Amazonas (Brazil) was temporally associated with a change in the age and sex profile of COVID-19 mortality: A population based ecological study.

Lancet Reg Health Am. 2021-9

[9]
COVID-19 in the state of São Paulo: the evolution of a pandemic.

Rev Bras Epidemiol. 2021

[10]
New Brazilian variant of the SARS-CoV-2 (P1/Gamma) of COVID-19 in Alagoas state.

Braz J Infect Dis. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索